Introduction to Knot Framing Functions

Tetsuya Ito (RIMS)

Dec 19, 2013
結び目の数学 VI
Before starting: convention

\[K : S^1 \hookrightarrow S^3 : \text{Smooth, oriented knot in } S^3 \]

Convention

The word “knot” may mean:

1. A particular smooth embedding of \(S^1 \) into \(S^3 \) (“knot” regarded as a smooth map)
2. An image of a particular smooth embedding of \(S^1 \) (Usual meaning of knots, and “knot” as a submanifold)
3. An isotopy (diffeotopy) class of specified embedding of circle. (Usual meaning of isotopy class of knots)
Compressing disc

Definition

For a knot $K : S^1 \hookrightarrow S^3$, a *compression disc* of K is a smooth map $D : D^2 \rightarrow S^3$ which satisfies:

1. $D|_{\partial D^2} = K$.
2. $D|_{\text{Int} D^2}$ transverse K.

Remark ▶ K is null-homotopic ($\pi_1(S^3) = 1$), so a compression disc always exists. (D is far from embedding)

▶ A compression disc D may not be an immersion, but one may assume that singularity of D is either branch point of Whitney's umbrellas (a generic map (general position) theory).

Tetsuya Ito

Dec, 2013 3 / 1
Compressing disc

Definition

For a knot $K : S^1 \hookrightarrow S^3$, a compression disc of K is a smooth map $D : D^2 \rightarrow S^3$ which satisfies:

1. $D|_{\partial D^2} = K$.
2. $D|_{\text{Int} D^2}$ transverse K.

Remark

- K is null-homotopic ($\pi_1(S^3) = 1$), so a compression disc always exists. (D is far from embedding)
- A compression disc D may not be an immersion, but one may assume that singularity of D is either branch point of Whitney’s umbrellas (a generic map (general position) theory).
Compressing disc: Example

A typical example of compressing disc is a clasp disc: A disc D bounded by a knot K having only the clasp singularities.
Framing function

Definition (Greene-Wiest, ‘98)

For a knot K, the **framing function** is a map

$$n_K : \mathbb{Z} \to \mathbb{N}$$

defined by

$$n_K = \min \{ \# K \cap D \mid D \text{ is a compressing disc of } K \text{ with } i(K, D) = k \}$$

Here,

\[
\begin{align*}
 i(K, D) & \text{ denotes the algebraic intersection number of } K \text{ and } D \\
 \# K \cap D & \text{ denotes the geometric intersection number of } K \text{ and } D.
\end{align*}
\]
Basic properties and related invariants

Proposition (Greene-Wiest)

For a $K \subset S^3$,

1. $n_K(k) \geq |k|$.
Basic properties and related invariants

Proposition (Greene-Wiest)

For a $K \subset S^3$,

1. $n_K(k) \geq |k|$.

2. $n_K(k + 1) \in \{ n_K(k) + 1, n_K(k) - 1 \}$.
Basic properties and related invariants

Proposition (Greene-Wiest)

For a $K \subset S^3$,

1. $n_K(k) \geq |k|$.
2. $n_K(k + 1) \in \{n_K(k) + 1, n_K(k) - 1\}$.
3. $n_K(0)$ is attained by an immersed compressing disc.
Basic properties and related invariants

Proposition (Greene-Wiest)

For a $K \subset S^3$,

1. $n_K(k) \geq |k|$.

2. $n_K(k + 1) \in \{ n_K(k) + 1, n_K(k) - 1 \}$.

3. $n_K(0)$ is attained by an immersed compressing disc.

4. $\nu(K) = \lim_{k \to \infty} \frac{n_K(k) - n_K(-k)}{2}$ is well-defined and $\nu(K) \in \mathbb{Z}$. $\nu(K)$ is called a natural framing of K.

Complexity $L(K)$ defined as $\min_{k \in \mathbb{Z}} n_K(k)$ is called a complexity of knot K. $L(K)$ always takes an even integers.
Basic properties and related invariants

Proposition (Greene-Wiest)

For a $K \subset S^3$,

1. $n_K(k) \geq |k|$.
2. $n_K(k + 1) \in \{n_K(k) + 1, n_K(k) - 1\}$.
3. $n_K(0)$ is attained by an immersed compressing disc.
4. $\nu(K) = \lim_{k \to \infty} \frac{n_K(k) - n_K(-k)}{2}$ is well-defined and $\nu(K) \in \mathbb{Z}$. $\nu(K)$ is called a natural framing of K.

Complexity

$L(K) \overset{\text{Def}}{=} \min_{k \in \mathbb{Z}} n_K(k)$ is called a complexity of knot K. $L(K)$ always takes an even integers.
Example 1: Figure eight knot

How can we determine the framing function?

K: Figure eight knot
Example 1: Figure eight knot

How can we determine the framing function?

K: Figure eight knot

1. $n_K(2) = n_K(-2) = 2.$

 Rem: $(n_K(k) \geq |k|)$ so it is sufficient to find a compressing disc with only positive/negative intersections.
2. Basic properties determine $n_K(k)$ except $k = 0$.
 $(n_K(0) = 4$ or 2. To determine $n_K(0)$, we need more deep argument.)

3. $\nu(K) = 0$ and $L(K) = 2$.
More generally:

Proposition

1. \(n_K(k) = n_{mK}(-k) \), where \(mK \) is the mirror image of \(K \).
2. In particular, \(\nu(K) = -\nu(mK) \), hence if \(K \) is amphicheiral, then \(\nu(K) = 0 \).

 (c.f. For amphicheiral knot \(K \), \(\sigma(K) = 0 \).)
More generally:

Proposition

1. \(n_K(k) = n_{mK}(-k) \), where \(mK \) is the mirror image of \(K \).
2. In particular, \(\nu(K) = -\nu(mK) \), hence if \(K \) is amphicheiral, then \(\nu(K) = 0 \).

 (c.f. For amphicheiral knot \(K \), \(\sigma(K) = 0 \).)

- It is hard to determine or even to have a non-trivial estimation for \(n_K \) or \(\mathcal{L}(K) \)
- It is often easier to handle \(\nu(K) \).
Example 2: Torus knot

Theorem (Greene-Wiest)

\[K = K(p, q): (p, q)\text{-torus knot} \]

\[n_{K(p, q)}(k) = (p - 1)(q - 1) + |k + (p - 1)(q - 1)| \]
Example 2: Torus knot

Theorem (Greene-Wiest)

\[K = K(p, q): \ (p, q)\text{-torus knot} \]
\[n_{K(p,q)}(k) = (p - 1)(q - 1) + |k + (p - 1)(q - 1)| \]

Remark

Recall that by Milnor's conjecture (first proven by Kronheimer-Mrowka)

\[u(K) = g_4(K) = g(K) = \frac{(p - 1)(q - 1)}{2} \]

The proof uses geometric aspects of Cayley graph of the torus knot group and algebraic interpretation of \(n_K \).
Algebraic interpretation

Fix a meridian $\mu \in \pi_1(S^3 - K)$.

$M = \{g\mu \pm g^{-1} | g \in \pi_1(S^3 - K)\}$: Set of meridinal elements

$l_k = \text{longitude of } K \text{ with } lk(K, l_k) = k \ (\in \pi_1(S^3 - K))$
Algebraic interpretation

Fix a meridian \(\mu \in \pi_1(S^3 - K) \).

\[\mathcal{M} = \{ g\mu^{\pm1}g^{-1} \mid g \in \pi_1(S^3 - K) \} \] : Set of meridinal elements

\(l_k = \text{longitude of } K \text{ with } lk(K, l_k) = k \ (\in \pi_1(S^3 - K)) \)

Theorem (Greene-Wiest '98)

\[n_K(k) = l_{\mathcal{M}}(l_k). \]

Here \(l_{\mathcal{M}} \) is the length function of \(\pi_1(S^3 - K) \) with respect to the generating set \(\mathcal{M} \).
Algebraic interpretation

Fix a meridian $\mu \in \pi_1(S^3 - K)$.

$\mathcal{M} = \{ g\mu^\pm g^{-1} \mid g \in \pi_1(S^3 - K) \}$: Set of meridinal elements

$l_k = $ longitude of K with $lk(K, l_k) = k \ (\in \pi_1(S^3 - K))$

Theorem (Greene-Wiest ’98)

$$n_K(k) = l_\mathcal{M}(l_k).$$

Here $l_\mathcal{M}$ is the length function of $\pi_1(S^3 - K)$ with respect to the generating set \mathcal{M}.

cf. **Theorem (Calegari-Gabai)**

$$g(K) = l_{[G,G]}(l_0)$$

Here $G = \pi_1(S^3 - K)$ and $l_{[G,G]}$ is the commutator length: the length function of G with respect to the commutators $[G, G]$.
Idea of proof: Compression disc provides a factorization of a longitude as a product of meridinal elements and vice versa.
Motivating question

Question

Determine or estimate $n_K(k)$, $\nu(K)$, or $\mathcal{L}(k)$.
Motivating question

Question

Determine or estimate $n_K(k)$, $\nu(K)$, or $\mathcal{L}(k)$.

1. At first glance, n_K seems to be related to 4-dimensional invariants: unknotting number, clasp number, and signatures.
Motivating question

Question

Determine or estimate $n_K(k)$, $\nu(K)$, or $\mathcal{L}(k)$.

1. At first glance, n_K seems to be related to 4-dimensional invariants: unknotting number, clasp number, and signatures.

2. $\nu(K)$ often coincides with the signature $\sigma(K)$. However, there are knots K with $\nu(K) \neq \sigma(K)$.
 (In particular, there is a knot (which is satellite), with odd $\nu(K)$ [Greene-Wiest]. (Recall that the signature of knot is always even)
Motivating question

Question

Determine or estimate $n_K(k)$, $\nu(K)$, or $\mathcal{L}(k)$.

1. At first glance, n_K seems to be related to 4-dimensional invariants: unknotting number, clasp number, and signatures.

2. $\nu(K)$ often coincides with the signature $\sigma(K)$. However, there are knots K with $\nu(K) \neq \sigma(K)$.
 (In particular, there is a knot (which is satellite), with odd $\nu(K)$ [Greene-Wiest]. (Recall that the signature of knot is always even)

(Remark: $n_K(0)$ is often the “hardest” value of n_K to determine – recall the figure eight knot case.)
Main Results: Framing function and knot genus

Proposition A

For a knot K, let $g(K)$ be the Seifert genus of K. Then

$$n_K(0) \geq 2g(K)$$
Main Results: Framing function and knot genus

Proposition A
For a knot \(K \), let \(g(K) \) be the Seifert genus of \(K \). Then

\[
n_K(0) \geq 2g(K)
\]

Actually, we have the following conjecture.

Conjecture A (I.)

\[
n_K(0) \geq 4g(K)
\]
Main Results: Framing function and knot genus

Proposition A

For a knot K, let $g(K)$ be the Seifert genus of K. Then

$$n_K(0) \geq 2g(K)$$

Actually, we have the following conjecture.

Conjecture A (I.)

$$n_K(0) \geq 4g(K)$$

Our main result proves the conjecture for $g(K) = 1$.

Main Theorem (conjectured by Greene-Wiest)

If K is not unknot, then

$$n_K(0) \geq 4$$
Dehn’s lemma

Theorem (Dehn’s lemma, Papakyriyakopoulos ’57)

Let K be a knot (in S^3). Assume that there exists a map

$$f : D^2 \to S^3$$

which satisfies

1. $f(\text{Int} \ D^2) \cap K = \emptyset$.
2. $f|_{\partial D^2} = K$.
3. $f|_{N(\partial D^2)}$ is an embedding.

Then K is unknot. Namely, there exists an embedding

$$f' : D^2 \to S^3$$

such that $f'|_{\partial D^2} = K$.

This result (and generalizations known as Loop theorem and Sphere theorem) are the most fundamental results in 3-dimensional topology.
Strengthened version of Dehn’s lemma

By using a language of compressing disc, Dehn’s lemma is equivalent to saying:

Theorem (Dehn’s lemma)

Let K be a knot in S^3. If there exists a compressing disc D of K such that $i(D, K) = \#(K \cap D) = 0 \ (\iff n_K(0) = 0)$, then K is unknot.

Then the Main Theorem says:

Corollary (Strengthened version of Dehn’s lemma)

Let K be a knot in S^3. If there exists a compressing disc D of K such that $i(D, K) = 0$ and $\#(K \cap D) \leq 2 \ (\iff n_K(0) \leq 2)$, then K is unknot.

Thus, we have a stronger form of Dehn’s lemma!
Strengthened version of Dehn’s lemma

By using a language of compressing disc, Dehn’s lemma is equivalent to saying:

Theorem (Dehn’s lemma)

Let K be a knot in S^3. If there exists a compressing disc D of K such that $i(D, K) = \#(K \cap D) = 0$ ($\iff n_K(0) = 0$), then K is unknot.

Then the Main Theorem says:

Corollary (Strengthened version of Dehn’s lemma)

Let K be a knot in S^3. If there exists a compressing disc D of K such that $i(D, K) = 0$ and $\#(K \cap D) \leq 2$ ($\iff n_K(0) \leq 2$), then K is unknot.

Thus, we have a stronger form of Dehn’s lemma!
Proof of Proposition: $n_K(0) \geq 2g(K)$

- Assume that $n_K(0) = m$ so we have an immersed compressing disc $D : D^2 \to S^3$

 with $i(D, K) = 0$ and $\#(D \cap K) = m$.

Tetsuya Ito
Framing function
Dec, 2013 18 / 1
Proof of Proposition: $n_K(0) \geq 2g(K)$

- Assume that $n_K(0) = m$ so we have an immersed compressing disc

\[D : D^2 \to S^3 \]

with $i(D, K) = 0$ and $(D \cap K) = m$.

- $i(D, K) = 0$ means $m = 2n$ and the number of positive and negative intersections are the same.
Proof of Proposition: \(n_K(0) \geq 2g(K) \)

- Assume that \(n_K(0) = m \) so we have an immersed compressing disc

\[
D : D^2 \rightarrow S^3
\]

with \(i(D, K) = 0 \) and \(\#(D \cap K) = m \).

- \(i(D, K) = 0 \) means \(m = 2n \) and the number of positive and negative intersections are the same.

- For a pair of positive and negative intersections, we attach a thin tube connecting them. This produces an immersed Seifert surface of genus \(n \).
Proof of Proposition (Continued)

Attach thin tubes to get immersed Seifert surface

Gabai’s theorem (immersed Seifert genus = usual (embedded) Seifert genus) says that $n \geq g(K)$.
Proof of Theorem (Sketch –(i))

- Assume that $n_K(0) = 2$ but K is not unknot.
 (By Proposition, $g(K) = 1$.)
Proof of Theorem (Sketch −(i))

- Assume that $n_K(0) = 2$ but K is not unknot. (By Proposition, $g(K) = 1$.)
- From a compressing disc D with $\#(D \cap K) = 2$, we get an immersed genus one Seifert surface

$$I : \Sigma_{1,1} \to S^3.$$

The co-core of tube $\gamma \subset I(\Sigma_{1,1})$ is not null-homologous:

$$\gamma \neq 0 \in H_1(S^3 - K).$$
Proof of Theorem (Sketch –(i))

- Assume that \(n_K(0) = 2 \) but \(K \) is not unknot.
 (By Proposition, \(g(K) = 1 \).)
- From a compressing disc \(D \) with \(\#(D \cap K) = 2 \), we get an immersed genus one Seifert surface

\[
I : \Sigma_{1,1} \rightarrow S^3.
\]

The co-core of tube \(\gamma \subset I(\Sigma_{1,1}) \) is not null-homologous:

\[
[\gamma] \neq 0 \in H_1(S^3 - K).
\]

Strategy

Prove \([\gamma] = 0\) in \(H_1(S^3 - K) \) by using topology and geometry of \(S^3 - K \). This leads to a contradiction.
Proof of Theorem (Sketch – (ii))

We “fill” the boundary, because

\[\pi_1(\Sigma_{1,1}) = F_2 \text{ (Free group)}, \quad \pi_1(\text{Torus}) = \mathbb{Z}^2 \text{ (Abelian group)}. \]

- \(M \): Closed 3-manifold obtained 0-framed surgery along \(K \).
- \(F : \Sigma_{1,1} \hookrightarrow S^3 \): a genus one Seifert surface of \(K \).

Observations (i)

- \(F \) and \(I \) extends to an embedded/immersed torus \(bF \) and \(bI \) in \(M \).
- \(i : S^3 - K, \to M \) induces an isomorphism on the 1st homology group.

Thus, we actually try to show

Modified Strategy

We show \(i^* \big[\big] = 0 \in H_1(M) \) to deduce a contradiction.
Proof of Theorem (Sketch – (ii))

We “fill” the boundary, because

\[\pi_1(\Sigma_{1,1}) = F_2 \text{ (Free group)}, \quad \pi_1(\text{Torus}) = \mathbb{Z}^2 \text{ (Abelian group)}. \]

- **M**: Closed 3-manifold obtained 0-framed surgery along \(K \).
- **\(F : \Sigma_{1,1} \hookrightarrow S^3 \)**: a genus one Seifert surface of \(K \).

Observations (i)

- **\(F \) and \(I \) extends to an embedded/immersed torus \(\hat{F} \) and \(\hat{I} \) in \(M \).**
- **\(i : S^3 - K \hookrightarrow M \)** induces an isomorphism on the 1st homology group.
Proof of Theorem (Sketch –(ii))

We “fill” the boundary, because

\[\pi_1(\Sigma_{1,1}) = F_2 \text{ (Free group)}, \quad \pi_1(\text{Torus}) = \mathbb{Z}^2 \text{ (Abelian group)}. \]

- \(M \): Closed 3-manifold obtained 0-framed surgery along \(K \).
- \(F : \Sigma_{1,1} \hookrightarrow S^3 \): a genus one Seifert surface of \(K \).

Observations (i)

- \(F \) and \(I \) extends to an embedded/immersed torus \(\hat{F} \) and \(\hat{I} \) in \(M \).
- \(i : S^3 - K \hookrightarrow M \) induces an isomorphism on the 1st homology group.

Thus, we actually try to show

Modified Strategy

We show \(i_*[\gamma] = 0 \in H_1(M) \) to deduce a contradiction.
Proof of Theorem (Sketch -(iii))

To show $i_*[\gamma] = 0 \in H_1(M)$,

What we actually prove

\hat{F} and \hat{I} can be put so that they are disjoint.

This is proven by looking intersection $\hat{F} \cap \hat{I}$. Then we use:

- Classification of centralizers (abelian subgroups) of (Haken) 3-manifolds.
 $\implies M$ must be very special kind of 3-manifold.

- Property of 0-framed surgery (Property R and related results)
 \implies Such M cannot be obtained by 0-surgery of genus one knot.
Open (tractable) questions

$n_K, \mathcal{L}(K), \nu(K)$ are less studied, so we have many, many open problems (and a lot of things to study)!

1. Try to make a table of $\nu(K)$ for 9–11 crossing knots.
2. Find a reasonable upper or lower bound by using other knot invariants. (Lower bounds seems to be more hard problem)
3. Try to compare signature $\sigma(K)$ and $\nu(K)$.
4. Try to find a compressing disc which is not a clasp disc. (i.e compare n_K with clasp number)
5. Try to find a family of interesting (complicated, but having reasonable structure) compressing disc for several family of knots.
6. Find a sufficient conditions for $\nu(K) \neq 0$.

(Remark: This paper is only 3 pages long!)