On the minimal coloring number of even-parallels of links

Eri Matsudo

Nihon University
Graduate School of Integrated Basic Sciences

Nihon University, December 20, 2016
Let L be a link, and D a diagram of L.

\mathbb{Z}-coloring

A map $C : \{\text{arcs of } D\} \rightarrow \mathbb{Z}$ is called a **\mathbb{Z}-coloring** on D if it satisfies the condition $2C(a) = C(b) + C(c)$ at each crossing of D with the over arc a and the under arcs b and c.

A \mathbb{Z}-coloring which assigns the same color to all the arcs of the diagram is called the **trivial \mathbb{Z}-coloring**.

\mathbb{Z}-colorable link

L is **\mathbb{Z}-colorable** if \exists a diagram of L with a non-trivial \mathbb{Z}-coloring.
Let L be a \mathbb{Z}-colorable link.

Minimal coloring number

We define the **minimal coloring number** of L, denoted by $\text{mincol}_\mathbb{Z}(L)$, as follows.

$$\min\{\#\text{Im}(C) \mid C : \text{non-trivial } \mathbb{Z}\text{-coloring on a diagram of } L\}$$
Let L be a \mathbb{Z}-colorable link.

Minimal coloring number

We define the minimal coloring number of L, denoted by $\mincol_{\mathbb{Z}}(L)$, as follows.

$$\min\{\#\text{Im}(C) \mid C: \text{non-trivial } \mathbb{Z}\text{-coloring on a diagram of } L\}$$

Theorem [Ichihara-M.]

Let L be a non-splittable \mathbb{Z}-colorable link. If there exists a simple \mathbb{Z}-coloring on a diagram of L, then $\mincol_{\mathbb{Z}}(L) = 4$.

Theorem [Ichihara-M.]

If a non-splittable link L admits a \mathbb{Z}-coloring C such that $\#\text{Im}(C) = 5$, then $\mincol_{\mathbb{Z}}(L) = 4$.
Let L be a \mathbb{Z}-colorable link.

Minimal coloring number

We define the **minimal coloring number** of L, denoted by $\mincol_{\mathbb{Z}}(L)$, as follows.

$$\min\{\#\text{Im}(C) \mid C : \text{non-trivial } \mathbb{Z}\text{-coloring on a diagram of } L\}$$

Theorem [Ichihara-M.]

Let L be a non-splittable \mathbb{Z}-colorable link. If there exists a simple \mathbb{Z}-coloring on a diagram of L, then $\mincol_{\mathbb{Z}}(L) = 4$.

Theorem [Ichihara-M.]

If a non-splittable link L admits a \mathbb{Z}-coloring C such that $\#\text{Im}(C) = 5$, then $\mincol_{\mathbb{Z}}(L) = 4$.

Question

For any \mathbb{Z}-colorable link L, $\mincol_{\mathbb{Z}}(L) = 4$?
Parallel of a link

For a link $L = K_1 \cup \cdots \cup K_c$ with a diagram D and a set (n_1, \cdots, n_c) of integers $n_i \geq 1$, we denote by $D^{(n_1, \cdots, n_c)}$ the diagram obtained by taking n_i-parallel copies of the i-th component K_i of D on the plane for $1 \leq i \leq c$. The link $L^{(n_1, \cdots, n_c)}$ represented by $D^{(n_1, \cdots, n_c)}$ is called the (n_1, \cdots, n_c)-parallel of the link L.

When L is a knot, we call (n)-parallel $L^{(n)}$ simply an n-parallel, and denote it by L^n.
Untwisted 2-parallel

A 2-parallel $K^2 = K_1 \cup K_2$ of a knot K is called the untwisted 2-parallel where $\text{lk}(K_1, K_2) = 0$.
Theorem 1
The untwisted 2-parallel K^2 of a knot K is \mathbb{Z}-colorable and $\text{mincol}_\mathbb{Z}(K^2) = 4$.

Theorem 2
For any diagram of a c-component link L and any even number n_1, \cdots, n_c at least 4, $L^{(n_1, \cdots, n_c)}$ is \mathbb{Z}-colorable and $\text{mincol}_\mathbb{Z}(L^{(n_1, \cdots, n_c)}) = 4$.
Outline of proof of Theorem 2

Let \(L = K_1 \cup \cdots \cup K_c \) be a link, and \(D \) a diagram of \(L \). We focus on crossings on \(D^{(n_1, \cdots, n_c)} \) obtained by taking parallel copies at a crossing of \(D \).
We put a circle as fencing the crossings.
We put a circle as fencing the crossings.

For any parallel arcs \((a_1, \cdots, a_k)\) out of the circle, we fix the colors of \(a_k/2\) and \(a_k/2+1\) are 1 and others are 0.
For any arcs inside the circle, we assign colors as follows.

In the case \(n_j = 4m + 2 (m \in \mathbb{N}) \), we assign the colors \(-1, 0, 1, 2\).
In the case $n_j = 4m + 4 (m \in \mathbb{N})$, we assign the colors $-1, 0, 1, 2, 3$.

\[n_i \left\{ \begin{array}{c} 0 \quad 0 \\ 0 \quad 0 \\ \vdots \\ 0 \quad 0 \\ 1 \quad -1 \\ 1 \quad -1 \\ \vdots \\ 0 \quad 0 \end{array} \right\} \
\left\{ \begin{array}{c} 0 \quad 0 \\ 0 \quad 0 \\ \vdots \\ 0 \quad 0 \\ 1 \quad -1 \\ 1 \quad -1 \\ \vdots \\ 0 \quad 0 \end{array} \right\} \
\left\{ \begin{array}{c} 2 \quad 0 \\ 2 \quad 0 \\ \vdots \\ 2 \quad 0 \\ 1 \quad -1 \\ 1 \quad -1 \\ \vdots \\ 0 \quad 0 \end{array} \right\} \
\left\{ \begin{array}{c} 0 \quad 0 \\ 0 \quad 0 \\ \vdots \\ 0 \quad 0 \\ 1 \quad -1 \\ 1 \quad -1 \\ \vdots \\ 0 \quad 0 \end{array} \right\} \
\left\{ \begin{array}{c} 0 \quad 0 \\ 0 \quad 0 \\ \vdots \\ 0 \quad 0 \\ 1 \quad -1 \\ 1 \quad -1 \\ \vdots \\ 0 \quad 0 \end{array} \right\} \
\left\{ \begin{array}{c} 2m \\ n_j \\ 2m \end{array} \right\} \]
We see that $D^{(n_1, \cdots, n_c)}$ admits a \mathbb{Z}-coloring C such that $\text{Im}(C) = \{-1, 0, 1, 2, 3\}$. Therefore $L^{(n_1, \cdots, n_c)}$ is \mathbb{Z}-colorable.

Moreover, we eliminate the arcs colored by 3 as follows.

It follows $\text{mincol}_\mathbb{Z}(L^{(n_1, \cdots, n_c)}) = 4$. □
Thank you for your attention.