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Basic Definitions

We first recall basic definitions in knot theory.

Definition (Seifert Surface)

A Seifert surface for a knot K  S® is an embedded orientable surface
S C 83 withdS = K.

Theorem (Seifert's Theorem)

Every knot in 52 bounds a Seifert surface.

Definition (Genus)
The genus of a knot K is defined:

g(K) :=min{g(S) | S: aSeifert surface for K }.
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Periodic Knot

Definition (Periodic Knot)

A knot K C S3 is called a periodic knot of period  n if there exists a
periodic map ¢ : (S3, K) — (53, K) of period n such that

® Fix(p) = ST,

® Fix(p)NK = 0.
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Strongly Invertible Knot

Definition (Strongly Invertible Knot)
A knot K is strongly invertible if there exists an inversion
h: (83 K)— (S3 K) such that

® Fix(h) = S,

® Fix(h) N K = {2 pts}.
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Previous Study

Theorem [Edmonds-Livingston, 1983]

For any periodic knot K C S3 with a periodic map ¢, there exists an
“incompressible” Seifert surface S for K such that ¢(S) = S.
In particular, if K is a fibered knot, then S is a minimal genus Seifert surface.

So it is natural to ask the following question.

What about for strongly invertible knots? \
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Fact

Fact

There is a strongly invertible knot which admits no invariant Seifert surface of
minimal genus.

() ()

This knot has exactly two minimal genus Seifert surfaces S, and S5 up to
isotopy.

But the strong inversion A interchanges S; and Ss.
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Does every strongly invertible knot (K, k) have an invariant Seifert surface?
Here an invariant Seifert surface for (K, h) is a Seifert surface for K such

that h(S) = S.

Remark: If S is an invariant Seifert surface for K, then S N Fix(h) is a
sub-arc of Fix(h) 2 S! bounded by Fix(h) N K = S°.

Fix(h) Fix(h)
9 9
S
S
1 K
0, 0,

Hifi 5K (Hiroshima Univ.) BAYIECEOREY A 7 )L ME December 23, 2016



Question 1 (Refined)

Question 1 (Refined)

For a strongly invertible knot (K, h), let §; and 2 be the sub-arcs of Fix(h)
bounded by Fix(h) N K.

For each i = 1, 2, does there exist an invariant Seifert surface .S; for (K, h)
such that S; N Fix(h) = §;?

Yes.

In first part of this talk, we give a positive answer to this question.
There is an algorithm to construct an invariant Seifert surface for a given
strongly invertible knot.
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Can the gaps between the invariant genera and the genera be arbitrarily
large?

Result 2 (H)
Yes.

H{Kn}nGN; VN € N7 dn € Na g(K'rH ha 6@) - g(Kn) > N.

| A

Definition (Invariant Genus)
The invariant genus of (K, h, §;) is defined:
g(K7 h: 51)
:=min{g(S) | S: an h-invariant Seifert surface with ¢; C S}.
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Basic Observation (1/2)

(K, h): astrongly invertible knot.

w83 — S§3/h =S8

O = n(Fix(h)), 6, := w(6;), k = n(K).

S: an invariant Seifert surface for (K, h) containing &; C Fix(h).

Then S := 7r(§) is a (possibly non-orientable) surface in S3/h satisfying the
following two conditions.

Condition (i) S =8 Uk, SNO=905SN0 =4;.

Fix(h) 0
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Basic Observation (2/2)

Condition (ii) Vv C int(S): a loop,
«y is an orientation preserving loop <= 1lk(v, O) =0 (mod 2),
7 is an orientation reversing loop <= lk(y, O) =1 (mod 2).

Ik(y, O) is even: x
D — @D

Ik(y, O) is odd: ’ x F
DD §

Proposition

If S C S3/h is a surface satisfying Conditions (i) and (ii), then S = 71(9)
is an invariant Seifert surface for (K, h).
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An Algorithm to Construct An Invariant Seifert Surface

(K, h): a strongly invertible knot.

T 83— 83/h= S5

O := n(Fix(h)), 6. := w(6;), k := 7(K).
(K, h) :=kUO.

An Algorithm (1/3)
Step 1. Modify (K, h) as in the following figure.

| | Fix(h) lo
rcl— |
|— \j (—\
strapg .;_ T (\<) | )
(@l —
F —— K . k
52 i
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An Algorithm to Construct An Invariant Seifert Surface

An Algorithm (2/3)

Step 2. Modify (K, h) as in the following figure around “straps” for (K, h).
Step 3. Modify further 8( K, h) to make the number of “straps” even.

I 1
cl=—qix L —<El.
1
Step 4. Fix an orientation of k, and number the “straps” according to the

orientation. Rearrange the “straps” by isotopy, so that they link ¢, C O from
the top to the bottom according to the order.

a5
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An Algorithm to Construct An Invariant Seifert Surface

An Algorithm (3/3)

Step 5. Attach the bands {B;} for 4] and each pair of two successive
“straps.”

Step 6. By cutting off the bands {B;} constructed in Step 5, we obtain a split
link O U & from 9(K h) By applying Seifert’s algorithm to &, we obtain the
Seifert surface S for k& which is separated from O.

Then S := S U (| B;) satisfies Conditions (i) and (ii). Hence S := 7~1(5) is
an invariant Seifert surface for (K, h).

[1 {41 [eA]
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An Example

n{ !7[
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The Conway Notation

K a 2-bridge knot.
If we describe K as in the following figure, then K is denoted by

C(al, N

; Gn)-

d

S

/T\—\ X \

n: odd
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Invariant Seifert Surface for 2-Bridge Knots

K =C(2by,..., 2by).
h: a strong inversion as in figure.
Then

Theorem (H)

g(K, b, 1) = > |bil.

i: odd
In particular,

9(K, h, 51) — = bl —k=>_ (bl -1).

i: odd i: odd
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Basic Observation

S: an invariant Seifert surface for (K, h) with 6, C S.

S :=n(9).

N(07) C S: aregular neighborhood of &} .
S"i=cl(S —N(07)), K :=05", K' .=k UO.
Note that £’ might “link” O around 47.

o1 | N&p

Observe that K’ := k' U O is the 2-bridge link
C(4b1, b, 4b3, by, ..., bog, 2m) for some m € Z.
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Normalization

S2:=82x{t} CcS?xRC S
We assume that K’ = O Uk’ C S? x [0, 1] C S? satisfies the following
conditions:

e K'n S% is a pair of mutually disjoint arcs of slope 1/0.

e K'n sg is a pair of mutually disjoint arcs of slope p/q.

® K'nS? (vt e (0, 1)) consists of four points.

® #(0ONS?) =2, #(kNS? =2.

|
_./_©
\

IE
i
N
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Claims (1/4)

S: an invariant Seifert surface for (K, h).

S :=x(9).

N(d7) C S: aregular neighborhood of ;.

S i=cl(S —=N(d7)), ¥ :=9S, K' .=k UO.

x(S) = 2x(S) — 1and x(S) = x(5').

S = S'LIJB. B
5:5’55. LS
X(S) = X(5") + x(B) — 2x(1)
=2x(9") +1-2 % s
=2x(9) - 1.
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Claims (2/4)

S c $3: an invariant Seifert surface such that g(S) = g(K, h, 6y).
Then

S" c 83/h — N(K') is incompressible and d-incompressible surface
satisfying Conditions (i)’ and (ii)’.

Condition (i) 98" =k, S'NO = 0.

Condition (i)’ Vv C int(S’): a loop,
«y is an orientation preserving loop <= 1k(y, O) =0 (mod 2),
~ is an orientation reversing loop <= lk(y, O) =1 (mod 2).
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Claims(3/4)

S" = cl(S — N(8))).
We regard a saddle of S’ in the way as a band B = I x I attached at its two
ends (0I) x I'to S'.

Claim 3 (cf. Hatcher-Thurston, 1985)

For each t € (0, 1), S’ N S? is an arc a such that da C k' and a N O = .

Each saddle of S’ has the following form up to
homeo.
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-al—B

20=1/0 2, =1/4
Ao =1/0, A1, ..., \; = p/q: the sequence of slopes of S’ N S? from the top
to the bottom s.t. A; # Aj11.

Then
Claim 5 (cf. Hatcher-Thurston, 1985)

If S” is incompressible and d-incompressible, then it can be isotoped (rel K”)
such that \; # A\, for each i.

Since the dual graph of the Farey tessellation is a tree, we can evaluate the
number of saddles.

Hence we can calculate the minimum genus of an invariant Seifert surface
for 2-bridge knots.
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Farey Tessellation

The Farey tessellation is the diagram as in the following figure.
There is an edge joining two fractions a/b and ¢/d whenever ad — bc = +1.

The edge from a/b to ¢/d is the long side of triangle whose third vertex is
(a+c)/(b+4d).

There is the sequence of triangles from 1/0 to p/q.
1/1

1/3

1/0

1/0

0/1

0/1 2/5
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Evaluation of Saddles

K= C(le, ey 2b2k), K = C(4b1,b2, 4[)3, b4, ey bgk, 2m)
The relative condition between the slopes of a;_. and oy is as in the
following figures.

Since the dual graph of the Farey tessellation is a tree, we need at least

>~ |b;| saddles.

i odd
Ay [

A~

Opvg

1N~

AVAVA
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Calculation of the Invariant Genus

K =C(2by, ..., 2bo).

n:= Y. |bl.
i: odd
Thus S’ obtains from D? by attaching n bands.
Here,
X(8") = x(D?) + nx(band) — 2nx ()
=14+n—-2n
=1-—n.
By using Claim 1, ~
X(S) =2x(5) - 1
=2(1-n)—1
=2 —2n.
H ~
ence. g(S)y=n="7) bil.
i: odd
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Result 2

K =C(2by, ..., 2by).
Theorem (H)

g(K, h, 61) = Y |bil.
i: odd
In particular,

g(K, b, 61) — g(K) = Y bl —k=>_(|bi| - 1).

i odd i: odd
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Can g(K, h, 63) — g(K) and g(K, h) — g(K) be also arbitrarily large?

Definition (Invariant Genus)
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Thank You for Your Attention!
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