強可逆結び目の不変ザイフェルト曲面

日浦 涼太

Hiroshima Univ.

December 23, 2016

Basic Definitions

We first recall basic definitions in knot theory.

Definition (Seifert Surface)

A **Seifert surface** for a knot $K \subset S^3$ is an embedded orientable surface $S \subset S^3$ with $\partial S = K$.

Theorem (Seifert's Theorem)

Every knot in S^3 bounds a Seifert surface.

Definition (Genus)

The **genus** of a knot K is defined:

$$g(K) := \min\{g(S) \mid S : \text{ a Seifert surface for } K\}.$$

Periodic Knot

Definition (Periodic Knot)

A knot $K \subset S^3$ is called a **periodic knot of period** n if there exists a periodic map $\varphi: (S^3, K) \to (S^3, K)$ of period n such that

- $\operatorname{Fix}(\varphi) \cong S^1$,
- $\operatorname{Fix}(\varphi) \cap K = \emptyset$.

Strongly Invertible Knot

Definition (Strongly Invertible Knot)

A knot K is **strongly invertible** if there exists an inversion $h:(S^3,K)\to(S^3,K)$ such that

- $Fix(h) = S^1$,
- $Fix(h) \cap K = \{2 \text{ pts}\}.$

Previous Study

Theorem [Edmonds-Livingston, 1983]

For any periodic knot $K\subset S^3$ with a periodic map φ , there exists an "incompressible" Seifert surface S for K such that $\varphi(S)=S$. In particular, if K is a fibered knot, then S is a minimal genus Seifert surface.

So it is natural to ask the following question.

Question

What about for strongly invertible knots?

Fact

Fact

There is a strongly invertible knot which admits no invariant Seifert surface of minimal genus.

This knot has exactly two minimal genus Seifert surfaces S_1 and S_2 up to isotopy.

But the strong inversion h interchanges S_1 and S_2 .

Question 1

Question 1

Does every strongly invertible knot $(K,\,h)$ have an invariant Seifert surface? Here an invariant Seifert surface for $(K,\,h)$ is a Seifert surface for K such that h(S)=S.

Remark: If S is an invariant Seifert surface for K, then $S \cap \operatorname{Fix}(h)$ is a sub-arc of $\operatorname{Fix}(h) \cong S^1$ bounded by $\operatorname{Fix}(h) \cap K = S^0$.

Question 1 (Refined)

Question 1 (Refined)

For a strongly invertible knot (K, h), let δ_1 and δ_2 be the sub-arcs of Fix(h) bounded by $Fix(h) \cap K$.

For each i=1, 2, does there exist an invariant Seifert surface S_i for (K, h) such that $S_i \cap Fix(h) = \delta_i$?

Result 1 (H)

Yes.

In first part of this talk, we give a positive answer to this question.

There is an algorithm to construct an invariant Seifert surface for a given strongly invertible knot.

Question 2

Question 2

Can the gaps between the invariant genera and the genera be arbitrarily large?

Result 2 (H)

Yes.

$$\exists \{K_n\}_{n\in\mathbb{N}}; \ \forall N\in\mathbb{N}, \ \exists n\in\mathbb{N}; \ g(K_n, h, \delta_i) - g(K_n) > N.$$

Definition (Invariant Genus)

The invariant genus of (K, h, δ_i) is defined:

$$g(K,\,h,\,\delta_i)$$
 := $\min\{g(S)\mid S$: an h -invariant Seifert surface with $\delta_i\subset S\}$.

Basic Observation (1/2)

(K, h): a strongly invertible knot.

 $\pi: S^3 \to S^3/h \cong S^3$.

 $O := \pi(\operatorname{Fix}(h)), \ \delta'_i := \pi(\delta_i), \ k := \pi(K).$

 \widetilde{S} : an invariant Seifert surface for $(K,\,h)$ containing $\delta_1\subset \mathrm{Fix}(h)$.

Then $S:=\pi(\widetilde{S})$ is a (possibly non-orientable) surface in S^3/h satisfying the following two conditions.

Basic Observation (2/2)

Condition (ii) $\forall \gamma \subset \text{int}(S)$: a loop,

 γ is an orientation preserving loop $\iff \operatorname{lk}(\gamma, O) \equiv 0 \pmod 2$, γ is an orientation reversing loop $\iff \operatorname{lk}(\gamma, O) \equiv 1 \pmod 2$.

Proposition

If $S\subset S^3/h$ is a surface satisfying Conditions (i) and (ii), then $\widetilde{S}:=\pi^{-1}(S)$ is an invariant Seifert surface for $(K,\,h).$

An Algorithm to Construct An Invariant Seifert Surface

(K, h): a strongly invertible knot.

$$\pi: S^3 \to S^3/h \cong S^3.$$

$$O := \pi(\operatorname{Fix}(h)), \ \delta'_i := \pi(\delta_i), \ k := \pi(K).$$

 $\theta(K, h) := k \cup O$.

An Algorithm (1/3)

Step 1. Modify $\theta(K, h)$ as in the following figure.

An Algorithm to Construct An Invariant Seifert Surface

An Algorithm (2/3)

<u>Step 2</u>. Modify $\theta(K, h)$ as in the following figure around "straps" for $\theta(K, h)$. <u>Step 3</u>. Modify further $\theta(K, h)$ to make the number of "straps" even.

<u>Step 4</u>. Fix an orientation of k, and number the "straps" according to the orientation. Rearrange the "straps" by isotopy, so that they link $\delta_2' \subset O$ from the top to the bottom according to the order.

An Algorithm to Construct An Invariant Seifert Surface

An Algorithm (3/3)

<u>Step 5.</u> Attach the bands $\{B_i\}$ for δ_1' and each pair of two successive "straps."

<u>Step 6</u>. By cutting off the bands $\{B_i\}$ constructed in *Step 5*, we obtain a split link $O \cup \check{k}$ from $\theta(K,h)$. By applying Seifert's algorithm to \check{k} , we obtain the Seifert surface \check{S} for \check{k} which is separated from O.

Then $S:=\check{S}\cup(\bigcup B_i)$ satisfies Conditions (i) and (ii). Hence $\widetilde{S}:=\pi^{-1}(S)$ is an invariant Seifert surface for $(K,\,h)$.

An Example

The Conway Notation

K: a 2-bridge knot.

If we describe K as in the following figure, then K is denoted by $C(a_1,\ldots,a_n)$.

Invariant Seifert Surface for 2-Bridge Knots

$$K=C(2b_1,\ldots,\,2b_{2k}).$$

h: a strong inversion as in figure.

Then

Theorem (H)

$$g(K, h, \delta_1) = \sum_{i: odd} |b_i|.$$

In particular,

$$g(K, h, \delta_1) - g(K) = \sum_{i: odd} |b_i| - k = \sum_{i: odd} (|b_i| - 1).$$

Basic Observation

 \widetilde{S} : an invariant Seifert surface for (K, h) with $\delta_1 \subset \widetilde{S}$.

 $S := \pi(S).$

 $N(\delta_1') \subset S$: a regular neighborhood of δ_1' .

 $S' := cl(S - N(\delta'_1)), \ k' := \partial S', \ K' := k' \cup O.$

Note that k' might "link" O around δ'_1 .

Observe that $K' := k' \cup O$ is the 2-bridge link

 $C(4b_1, b_2, 4b_3, b_4, \ldots, b_{2k}, 2m)$ for some $m \in \mathbb{Z}$.

Normalization

$$S_t^2 := S^2 \times \{t\} \subset S^2 \times \mathbb{R} \subset S^3.$$

We assume that $K' = O \cup k' \subset S^2 \times [0, 1] \subset S^3$ satisfies the following conditions:

- $K' \cap S_1^2$ is a pair of mutually disjoint arcs of slope 1/0.
- $K' \cap S_0^2$ is a pair of mutually disjoint arcs of slope p/q.
- $\bullet \ \ K'\cap S^2_t \ (\forall t\in (0,\,1)) \ \mbox{consists of four points}.$
- $\#(O \cap S_t^2) = 2, \ \#(k' \cap S_t^2) = 2.$

Claims (1/4)

 \widetilde{S} : an invariant Seifert surface for (K, h).

 $S := \pi(S)$.

 $N(\delta_1') \subset S$: a regular neighborhood of δ_1' .

 $S' := \operatorname{cl}(S - \operatorname{N}(\delta_1')), \ k' := \partial S, \ K' := k' \cup O.$

Claim 1

$$\chi(\widetilde{S}) = 2\chi(S) - 1$$
 and $\chi(S) = \chi(S')$.

$$S = S' \underset{I}{\cup} B.$$

$$\widetilde{S} = \widetilde{S}' \underset{2I}{\cup} \widetilde{B}.$$

$$\chi(\widetilde{S}) = \chi(\widetilde{S}') + \chi(\widetilde{B}) - 2\chi(I)$$

$$= 2\chi(S') + 1 - 2$$

$$= 2\chi(S) - 1.$$

Claims (2/4)

 $\widetilde{S}\subset S^3$: an invariant Seifert surface such that $g(\widetilde{S})=g(K,\,h,\,\delta_1).$ Then

Claim 2

 $S'\subset S^3/h-{\rm N}(K')$ is incompressible and ∂ -incompressible surface satisfying Conditions (i)' and (ii)'.

Condition (i)' $\partial S' = k', S' \cap O = \emptyset.$

Condition (ii)' $\forall \gamma \subset \operatorname{int}(S')$: a loop,

 γ is an orientation preserving loop $\iff \operatorname{lk}(\gamma, O) \equiv 0 \pmod 2$, γ is an orientation reversing loop $\iff \operatorname{lk}(\gamma, O) \equiv 1 \pmod 2$.

Claims(3/4)

 $S' := \operatorname{cl}(S - \operatorname{N}(\delta_1')).$

We regard a saddle of S' in the way as a band $B=I\times I$ attached at its two ends $(\partial I)\times I$ to S'.

Claim 3 (cf. Hatcher-Thurston, 1985)

For each $t \in (0, 1)$, $S' \cap S_t^2$ is an arc α such that $\partial \alpha \subset k'$ and $\alpha \cap O = \emptyset$.

Claim 4

Each saddle of S' has the following form up to homeo.

Claims(4/4)

 $\lambda_0=1/0,\,\lambda_1,\,\ldots,\,\lambda_l=p/q$: the sequence of slopes of $S'\cap S_t^2$ from the top to the bottom s.t. $\lambda_i\neq\lambda_{i+1}$.

Then

Claim 5 (cf. Hatcher-Thurston, 1985)

If S' is incompressible and ∂ -incompressible, then it can be isotoped (rel K') such that $\lambda_i \neq \lambda_{i+2}$ for each i.

Since the dual graph of the Farey tessellation is a tree, we can evaluate the number of saddles.

Hence we can calculate the minimum genus of an invariant Seifert surface for 2-bridge knots.

Farey Tessellation

The Farey tessellation is the diagram as in the following figure.

There is an edge joining two fractions a/b and c/d whenever $ad-bc=\pm 1$. The edge from a/b to c/d is the long side of triangle whose third vertex is (a+c)/(b+d).

There is the sequence of triangles from 1/0 to p/q.

Evaluation of Saddles

$$K = C(2b_1, \ldots, 2b_{2k}), K' = C(4b_1, b_2, 4b_3, b_4, \ldots, b_{2k}, 2m).$$

The relative condition between the slopes of $\alpha_{t-\varepsilon}$ and $\alpha_{t+\varepsilon}$ is as in the following figures.

Since the dual graph of the Farey tessellation is a tree, we need at least $\sum_{i:\ odd}|b_i|$ saddles.

Calculation of the Invariant Genus

$$K = C(2b_1, \ldots, 2b_{2k}).$$

$$n := \sum_{i: odd} |b_i|.$$

Thus S' obtains from D^2 by attaching n bands. Here,

$$\chi(S') = \chi(D^2) + n\chi(\mathsf{band}) - 2n\chi(I)$$
$$= 1 + n - 2n$$
$$= 1 - n.$$

By using Claim 1,

$$\chi(\widetilde{S}) = 2\chi(S') - 1$$
$$= 2(1 - n) - 1$$
$$= 2 - 2n.$$

Hence.

$$g(\widetilde{S}) = n = \sum_{i: odd} |b_i|.$$

Result 2

$$K=C(2b_1,\ldots,2b_{2k}).$$

Theorem (H)

$$g(K, h, \delta_1) = \sum_{i: odd} |b_i|.$$

In particular,

$$g(K, h, \delta_1) - g(K) = \sum_{i: odd} |b_i| - k = \sum_{i: odd} (|b_i| - 1).$$

Question

Can $g(K, h, \delta_2) - g(K)$ and g(K, h) - g(K) be also arbitrarily large?

Definition (Invariant Genus)

The invariant genus of (K, h) is defined:

$$g(K, h) := \min_{i=1, 2} \{g(K, h, \delta_i)\}.$$

$$K_n := C\underbrace{(4, 4, \dots, 4)}_{2\mathsf{n}}$$

Then

$$g(K_n, h) - g(K_n) = n?$$

Thank You for Your Attention!