Minimal coloring numbers on minimal diagrams of torus links

Eri Matsudo

Nihon University
Institute of Natural Sciences

Joint work with
K. Ichihara (Nihon Univ.) and K. Ishikawa (RIMS, Kyoto Univ.)

Nihon University, Dec 19, 2019
Let L be a link, and D a diagram of L.

\textbf{\mathbb{Z}-coloring}

A map $\gamma : \{\text{arcs of } D\} \rightarrow \mathbb{Z}$ is called a \mathbb{Z}-coloring on D if it satisfies the condition $2\gamma(a) = \gamma(b) + \gamma(c)$ at each crossing of D with the over arc a and the under arcs b and c.
Z-colorable link

L is **Z-colorable** if \exists a diagram of L with a non-trivial \mathbb{Z}-coloring, i.e., a \mathbb{Z}-coloring which at least two colors.

Remark

L is \mathbb{Z}-colorable if and only if $\det(L) = 0$.

Thus, any knot K is non-\mathbb{Z}-colorable, for $\det(K)$ is odd.

Minimal coloring number

The **minimal coloring number** $\text{mincol}_\mathbb{Z}(D)$ of a diagram D of L is defined as the minimum of the number of colors among non-trivial \mathbb{Z}-colorings on D. The **minimal coloring number** $\text{mincol}_\mathbb{Z}(L)$ of L is the minimum of $\text{mincol}_\mathbb{Z}(D)$.
Let L be a \mathbb{Z}-colorable link.

Theorem. [I.chihara-M., 2017]
If L is non-splittable, then $\text{mincol}_{\mathbb{Z}}(L) \geq 4$.

Proposition.
If the crossing number of L is at most 10, then $\text{mincol}_{\mathbb{Z}}(L) = 4$.

Question: How many colors are enough to color?
For any non-splittable \mathbb{Z}-colorable link L, $\text{mincol}_{\mathbb{Z}}(L) = 4$?
Theorem. [Zhang-Jin-Deng, 2017], [M., 2019]
For any non-splittable \(\mathbb{Z} \)-colorable link \(L \), \(\text{mincol}_{\mathbb{Z}}(L) = 4 \) holds.
Theorem. [Zhang-Jin-Deng, 2017], [M., 2019]

For any non-splittable \mathbb{Z}-colorable link L, $\text{mincol}_\mathbb{Z}(L) = 4$ holds.

(Next) Problem.

For a particular diagram D of a non-splittable \mathbb{Z}-colorable link, how many colors are enough to color? i.e., $\text{mincol}_\mathbb{Z}(D) =$?

Here we consider torus link & standard diagram.
Torus link

Fact

The torus link $T(a, b)$ running a times meridionally and b times longitudinally is \mathbb{Z}-colorable if a or b is even.

Theorem [I.chihara-M., 2018]

$\text{mincol}_\mathbb{Z}(D) = 4$ for the standard diagram D of $T(pn, n)$ with $n > 2$, even and $p \neq 0$.

The standard diagram of $T(pr, qr)$.

It is known to be a minimal diagram if $p \geq q$.
Theorem [Ichihara.-Ishikawa-M. (arXiv:1908.00857)]

Let p, q, r be integers such that p and q are coprime with $|p| \geq q \geq 1$, $r \geq 2$. Let D be the standard diagram of $T(pr, qr)$. Suppose that $T(pr, qr)$ is \mathbb{Z}-colorable, i.e., pr or qr is even. Then,

$$
\text{mincol}_{\mathbb{Z}}(D) = \begin{cases}
4 & \text{if } r \text{ is even}, \\
5 & \text{if } r \text{ is odd}.
\end{cases}
$$
Proof of Theorem. [5 colors case: \(r \) is odd]

We assume that the colors are 0, 1, 2, 3 and derive a contradiction. Then, there are only crossings colored as;

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
0 & 2 & 1 & 3 & a & a \\
\end{array}
\]

\(a \in \{0, 1, 2, 3\} \)
Proof of Theorem. [5 colors case: \(r \) is odd]

We assume that the colors are 0, 1, 2, 3 and derive a contradiction. Then, there are only crossings colored as:

\[
\begin{array}{cccc}
0 & 2 & 1 & 3 \\
\hline
1 & 2 & 1 & 3 \\
\hline
& & & a \\
\end{array}
\]

Thus the over arcs must be colored by 1 or 2. And the arcs of a component which has an arc colored by 0 or 2 (1 or 3) are always colored by even (odd) numbers.
Proof of Theorem. [5 colors case: \(r\) is odd, \(q = 1\)]

We may assume that the number of the over arcs colored by 1 is odd in the \(r\) parallel over arcs.
Proof of Theorem. [5 colors case: \(r \) is odd, \(q = 1 \)]

We may assume that the number of the over arcs colored by 1 is odd in the \(r \) parallel over arcs. In the case of \(q = 1 \), since

\[
\exists \text{ an over arc colored by } 0 \Rightarrow \text{ a contradiction.}
\]
Proof of Theorem. [5 colors case: r is odd, $q \geq 2$]

<table>
<thead>
<tr>
<th>0</th>
<th>...</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

In the case of $q \geq 2$, by going through the r parallel arcs, the color 2 changes to 0, since there are odd over arcs colored by 1.
The change of the colors are expressed by using a linear function f. Then we see $f(0) = 2$ and $f(2) = 0$.

That is, $f(X) = -X + 2$.
Proof of Theorem. \([5 \text{ colors case: } r \text{ is odd, } q \geq 2]\)

From the \(\mathbb{Z}\)-coloring is non-trivial, there exists an arc colored by 3. We see \(f(3) = -1\).

This gives a contradiction. \(\square\)
We can have a complete classification of all the \(\mathbb{Z} \)-colorings on the standard diagram of \(T(pr, qr) \). (Here the details are omitted.)

\[
A = \left\{ (a_1, \ldots, a_q) \in (\mathbb{Z}^r)^q \mid \text{the assignment of } a_1, \ldots, a_q \in \mathbb{Z}^r \text{ to } x_1, \ldots, x_q \text{ defines a } \mathbb{Z} \text{-coloring of } D \right\}
\]

Proposition 1.

We have

\[
A = \left\{ \begin{array}{ll}
\{(a, \ldots, a) \mid a \in \mathbb{Z}^r, \Delta(a) = 0\} & \text{if } r \text{ is even,} \\
\{(a, \ldots, a) \mid a \in \mathbb{Z}^r\} & \text{if } r \text{ is odd, } p \text{ is even,} \\
\{(a, \tau(a), a, \ldots, \tau(a)) \mid a \in \mathbb{Z}^r\} & \text{if } r \text{ is odd, } q \text{ is even,}
\end{array} \right.
\]

where \(\Delta(a) = a_1 - a_2 + \cdots + (-1)^r a_r \in \mathbb{Z} \) and \(\tau(a) = (-a_i + 2\Delta(a))_i \in \mathbb{Z}^r \) for \(a = (a_1, \ldots, a_r) \in \mathbb{Z}^r \).
Example: r is even

$T(4n, 8) \ (r = 4), \ a = (0 \ 1 \ 2 \ 1)$
Example: \(r \) is odd, \(q \) is even

\[T(3n, 6) \ (r = 3, \ q = 2), \ a = (2 \ 1 \ 0), \ \Delta(a) = 1 \]
Results

We can also have a complete classification of all the \mathbb{Z}-colorings by only four colors of $T(pr, qr)$. (Here the details are omitted.)

$$A^{(4)} = \left\{ (a_1, \ldots, a_q) \in (\mathbb{Z}^r)^q \ \middle| \ \text{the assignment of } a_1, \ldots, a_q \in \mathbb{Z}^r \text{ to } x_1, \ldots, x_q \text{ defines a } \mathbb{Z}\text{-coloring of } D \right\}$$

Proposition 2.

We have

$$A^{(4)} = \left\{ (a, \ldots, a) \ \middle| \ a \in A^{(4)}_{01} \cup A^{(4)}_{12} \cup A^{(4)}_{23} \right\} \setminus \{(1, \ldots, 1), (2, \ldots, 2)\},$$

where

$$A^{(4)}_{01} = \{(a_1, \ldots, a_r) \in \{0, 1\}^r \ | \ a_1 = a_r = 1, a_{2i} = a_{2i+1} (i = 1, \ldots, r/2 - 1)\},$$

$$A^{(4)}_{12} = \{(a_1, \ldots, a_r) \in \{1, 2\}^r \ | \ a_{2i-1} = a_{2i} (i = 1, \ldots, r/2)\},$$

$$A^{(4)}_{23} = \{(a_1, \ldots, a_r) \in \{2, 3\}^r \ | \ a_1 = a_r = 2, a_{2i} = a_{2i+1} (i = 1, \ldots, r/2 - 1)\}.$$
Example: $A^{(4)}_{01}$

$T(4n, 8) \ (r = 4), \ a = (1 \ 0 \ 0 \ 1)$
Example: $A_{12}^{(4)}$

$T(4n, 8) (r = 4), \ a = (1 \ 1 \ 2 \ 2)$
Thank you for your attention.