By Dehn surgery, we mean an operation to create a new 3-manifold from a given one and a given knot in it as follows: Take an open tubular neighborhood of the knot, remove it, and glue a solid torus back.

A motivation to study Dehn surgery comes from the following famous fact, now called Hyperbolic Dehn Surgery Theorem, due to W.P. Thurston [4]: On a hyperbolic knot (i.e., a knot with hyperbolic complement), all but finitely many Dehn surgeries yield hyperbolic 3-manifolds. In view of this, such finitely many exceptions are called exceptional surgeries. Then it is natural to ask: How many exceptional surgeries can occur on each knot? Concerning this question, C.McA. Gordon conjectured that:

Conjecture ([2, Problem 1.77]). There exist at most 10 exceptional surgeries on each hyperbolic knot.

Recall that Dehn surgery on a knot K is called surgery along the slope γ if the curve identified with the meridian of the attached solid torus via the surgery represents γ on the peripheral torus of K. Then our first result is the following;

Theorem 1 ([1]). Let μ be any slope for a hyperbolic knot K. Then there are at most 10 exceptional surgeries on K along slope γ with $\Delta(\mu, \gamma) \leq 1$.

Here the distance $\Delta(\gamma_1, \gamma_2)$ between two slopes γ_1, γ_2 is defined as the minimal intersection number between the representatives of the slopes.

When K is a knot in the 3-sphere S^3, by using the standard meridian-longitude system, slopes on the peripheral torus of K are parametrized by rational numbers with 1/0. See [3] for example. Then the Dehn surgery on K along the meridional slope 1/0 is called the trivial Dehn surgery on K in S^3. It yields S^3 again, which
is obviously exceptional if K is hyperbolic. We say that a Dehn surgery on K in S^3 is integral if it is along a slope corresponding an integer. This means that the slope is represented by a curve which runs longitudinally once.

Thus we have the following corollary from Theorem 1.

Corollary 2 ([1]). On any hyperbolic knot in S^3, there are at most 9 non-trivial integral exceptional surgeries.

On the other hand, we obtain the next independently;

Theorem 3. On a hyperbolic alternating knot in S^3, non-trivial exceptional surgeries are all integral.

From Theorem 3 together with Corollary 2, it follows that:

Theorem 4. On a hyperbolic alternating knot in S^3, there are at most 10 exceptional surgeries.

Therefore the Gordon’s conjecture is true for such knots.

References

