Exceptional surgeries on $(−2, p, p)$-pretzel knots

In Dae Jong

Osaka City University Advanced Mathematical Institute (OCAMI)

Joint work with
Kazuhiro Ichihara (Nihon University)
&
Yuichi Kabaya (OCAMI)

The 7th East Asian School of Knots and Related Topics
2011/1/10 14:25–14:50
Hakuwa Hotel
Dehn surgery on a knot

- K: a knot in S^3
- $E(K)$: the exterior of K (i.e., $S^3 \setminus N^\circ(K)$)
Dehn surgery on a knot

- \(K \): a knot in \(S^3 \)
- \(E(K) \): the exterior of \(K \) (i.e., \(S^3 \setminus N^\circ(K) \))

Dehn surgery: Gluing a solid torus to \(E(K) \)

\[\gamma = \left[f(m) \right] \]: surgery slope, identified with \(r \in \mathbb{Q} \cup \{1/0\} \).

\(K(r) \): the manifold obtained by Dehn surgery on \(K \) along \(\gamma = r \).
Types of Dehn surgeries

As a consequence of the geometrization conjecture, a Dehn surgery on a knot is one of the following:

- **Hyperbolic** surgery (yielding a hyperbolic mfd.)
- **Seifert** surgery (yielding a Seifert fibered mfd.)
- **Toroidal** surgery (yielding a mfd. containing an essential T^2)
- **Reducible** surgery (yielding a mfd. containing an essential S^2)
Types of Dehn surgeries

As a consequence of the geometrization conjecture, a Dehn surgery on a knot is one of the following:

- **Hyperbolic** surgery (yielding a hyperbolic mfd.)
- **Seifert** surgery (yielding a Seifert fibered mfd.)
- **Toroidal** surgery (yielding a mfd. containing an essential T^2)
- **Reducible** surgery (yielding a mfd. containing an essential S^2)

Problem

For a given knot K and $r \in \mathbb{Q}$, determine a type of $K(r)$.
Pretzel knot $P(a_1, \ldots, a_n)$

A knot admitting a diagram obtained by putting n tangles consisting of a_i-half twists ($i = 1, \ldots, n$) together in a circle.

$P(-2, 3, 3)$
Pretzel knot $P(a_1, \ldots, a_n)$

A knot admitting a diagram obtained by putting n tangles consisting of a_i-half twists ($i = 1, \ldots, n$) together in a circle.

Today we study Dehn surgeries on $P(-2, p, q)$ with odd positive integers p, q.
Hyperbolicity of $P(-2, p, q)$

Fact [Menasco], [Oertel], [Bonahon-Siebenmann]
Non-hyperbolic pretzel knots are

- $P(-2, 1, q) = T(2, q + 2)$,
- $P(-2, 3, 3) = T(3, 4)$, and
- $P(-2, 3, 5) = T(3, 5)$.

$T(x, y)$: the (x, y)-torus knot.
Hyperbolicity of $P(-2, p, q)$

Fact [Menasco], [Oertel], [Bonahon-Siebenmann]

Non-hyperbolic pretzel knots are

- $P(-2, 1, q) = T(2, q + 2)$,
- $P(-2, 3, 3) = T(3, 4)$, and
- $P(-2, 3, 5) = T(3, 5)$.

$T(x, y)$: the (x, y)-torus knot.

Proposition [Moser]

Dehn surgeries on torus knots have been completely classified.
Hyperbolicity of $P(-2, p, q)$

Fact [Menasco], [Oertel], [Bonahon-Siebenmann]
Non-hyperbolic pretzel knots are
- $P(-2, 1, q) = T(2, q + 2)$,
- $P(-2, 3, 3) = T(3, 4)$, and
- $P(-2, 3, 5) = T(3, 5)$.

$T(x, y)$: the (x, y)-torus knot.

Proposition [Moser]
Dehn surgeries on torus knots have been completely classified.

Hereafter we focus on hyperbolic $P(-2, p, q)$.
Reducible surgeries on $P(-2, p, q)$

Recall: A Dehn surgery on a knot is either Hyperbolic, Seifert, Toroidal, or Reducible.

Proposition [Wu]
A hyperbolic $P(-2, p, q)$ admits no reducible surgery.
Redducible surgeries on $P(-2, p, q)$

Recall: A Dehn surgery on a knot is either **Hyperbolic**, **Seifert**, **Toroidal**, or **Reducible**.

Proposition [Wu]

A hyperbolic $P(-2, p, q)$ admits no reducible surgery.

Conjecture (Cabling conjecture)

A hyperbolic knot admits no reducible surgery.
Result 1: **Seifert surgeries on** $P(-2, p, q)$

Fact [Ichihara-J.], [Futer-Ishikawa-Kabaya-Mattman-Shimokawa]

$K = P(-2, p, q)$ admits **Seifert** surgery with $|\pi_1(K(r))| < \infty$

$\iff K = P(-2, 3, 7) \text{ or } P(-2, 3, 9)$.

Recall: $P(-2, 1, 1) = T(2, 3)$ and $P(-2, 3, 3) = T(3, 4)$.

Open problem.

A hyperbolic $P(-2, p, p)$ admits no Seifert surgeries.
Result 1: **Seifert** surgeries on $P(-2, p, q)$

Fact [Ichihara-J.], [Futer-Ishikawa-Kabaya-Mattman-Shimokawa]

$K = P(-2, p, q)$ admits **Seifert** surgery with $|\pi_1(K(r))| < \infty$

$\Leftrightarrow K = P(-2, 3, 7)$ or $P(-2, 3, 9)$.

Theorem A [Ichihara-J.-Kabaya]

For odd $p \geq 1$, $P(-2, p, p)$ admits a **Seifert** surgery $\Leftrightarrow p = 1$ or 3.
Result 1: **Seifert surgeries on** $P(-2, p, q)$

Fact [Ichihara-J.], [Futer-Ishikawa-Kabaya-Mattman-Shimokawa]

$K = P(-2, p, q)$ admits **Seifert** surgery with $|\pi_1(K(r))| < \infty$

$\iff K = P(-2, 3, 7)$ or $P(-2, 3, 9)$.

Theorem A [Ichihara-J.-Kabaya]

For odd $p \geq 1$, $P(-2, p, p)$ admits a **Seifert** surgery $\iff p = 1$ or 3.

Recall: $P(-2, 1, 1) = T(2, 3)$ and $P(-2, 3, 3) = T(3, 4)$.

Corollary

A hyperbolic $P(-2, p, p)$ admits **no Seifert** surgery.
Result 1: \textbf{Seifert surgeries on }$P(-2, p, q)$

\textbf{Fact [Ichihara-J.], [Futer-Ishikawa-Kabaya-Mattman-Shimokawa]}

$K = P(-2, p, q)$ admits \textbf{Seifert} surgery with $|\pi_1(K(r))| < \infty$

$\iff K = P(-2, 3, 7)$ or $P(-2, 3, 9)$.

\textbf{Theorem A [Ichihara-J.-Kabaya]}

For odd $p \geq 1$, $P(-2, p, p)$ admits a \textbf{Seifert} surgery $\iff p = 1$ or 3.

\textbf{Recall: } $P(-2, 1, 1) = T(2, 3)$ and $P(-2, 3, 3) = T(3, 4)$.

\textbf{Corollary}

A hyperbolic $P(-2, p, p)$ admits \textbf{no Seifert} surgery.

\textbf{Open problem}

Determine Seifert surgeries on $P(-2, p, q)$ with $3 \leq p < q$.
Outline of the proof of Theorem A

Applying the Montesinos trick, we obtain a link $L_r \subset S^3$ such that the double branched covering of S^3 branched along L_r is $P(-2,p,p)(r)$ (Remark: $P(-2,p,p)$ is strongly invertible).
Applying the Montesinos trick, we obtain a link $L_r \subset S^3$ such that the double branched covering of S^3 branched along L_r is $P(-2, p, p)(r)$ (Remark: $P(-2, p, p)$ is strongly invertible).

If $P(-2, p, p)(r)$ is a Seifert manifold,

then L_r is a Montesinos link or a Seifert link.
Outline of the proof of Theorem A

Applying the Montesinos trick, we obtain a link $L_r \subset S^3$ such that the double branched covering of S^3 branched along L_r is $P(-2, p, p)(r)$ (Remark: $P(-2, p, p)$ is strongly invertible).

If $P(-2, p, p)(r)$ is a Seifert manifold,

then L_r is a Montesinos link or a Seifert link.

\Rightarrow If L_r is neither Montesinos nor Seifert for $\forall r \in \mathbb{Q}$,

then $P(-2, p, p)$ admits no Seifert surgery.
Outline of the proof of Theorem A

Applying the Montesinos trick, we obtain a link \(L_r \subset S^3 \) such that the double branched covering of \(S^3 \) branched along \(L_r \) is \(P(-2, p, p)(r) \) (\[\text{Remark}\]: \(P(-2, p, p) \) is strongly invertible).

If \(P(-2, p, p)(r) \) is a Seifert manifold,
then \(L_r \) is a Montesinos link or a Seifert link.

\[\Rightarrow \] If \(L_r \) is neither Montesinos nor Seifert for \(\forall r \in \mathbb{Q} \),
then \(P(-2, p, p) \) admits no Seifert surgery.

To show that \(L_r \) is not a Montesinos knot, we use the following.

\(s(K) \): the Rasmussen invariant of a knot \(K \)
\(\sigma(K) \): the signature of a knot \(K \)

Lemma

\[|s(L_r) - \sigma(L_r)| \geq 4 \Rightarrow L_r \text{ is not a Montesinos knot.} \]
Proposition [Wu]

$P(-2, p, q)(r)$ is toroidal $\iff r = 2p + 2q$.

Question.

Is $N_{p,q}$ Seifert or hyperbolic?
Toroidal surgery on $P(-2, p, q)$

Proposition [Wu]

$P(-2, p, q)(r)$ is toroidal $\iff r = 2p + 2q.$

$\Rightarrow P(-2, p, q)(2p + 2q)$ contains a unique incompressible torus $T.$
Proposition [Wu]

\[P(-2, p, q)(r) \text{ is toroidal } \iff r = 2p + 2q. \]

\[\Rightarrow P(-2, p, q)(2p + 2q) \text{ contains a unique incompressible torus } T. \]

\[\Rightarrow \text{Cutting } P(-2, p, q)(2p + q) \text{ along } T, \text{ we have two components.} \]

One of them is a twisted \(I \)-bundle over the Klein bottle.
Toroidal surgery on $P(-2, p, q)$

Proposition [Wu]

$P(-2, p, q)(r)$ is toroidal $\Leftrightarrow r = 2p + 2q$.

$\Rightarrow P(-2, p, q)(2p + 2q)$ contains a unique incompressible torus T.

\Rightarrow Cutting $P(-2, p, q)(2p + q)$ along T, we have two components.

One of them is a twisted I-bundle over the Klein bottle.

$N_{p,q}$: the other component

Question

Is which $N_{p,q}$ Seifert or hyperbolic?
Result 2: JSJ pieces of $P(-2, p, q)(2p + 2q)$

C: the 3-component chain-link

Theorem B [Ichihara-J.-Kabaya]

$N_{p,q} = C \left(\frac{1 + p}{1 - p}, \frac{1 + q}{1 - q} \right)$.
Result 2: JSJ pieces of $P(-2, p, q)(2p + 2q)$

C: the 3-component chain-link

Theorem B [Ichihara-J.-Kabaya]

$$N_{p,q} = C \left(\frac{1+p}{1-p}, \frac{1+q}{1-q} \right).$$

Dehn surgeries on C are completely classified [Martelli-Petronio].

Corollary

- $N_{3,q}$ is the Seifert manifold $(D^2; (3, 1), (\frac{q-3}{2}, \frac{q-1}{2}))$.
- The others are hyperbolic.
Result 2: JSJ pieces of $P(-2, p, q)(2p + 2q)$

\[N_{p,q} = C \left(\frac{1 + p}{1 - p}, \frac{1 + q}{1 - q} \right) \]

C: the 3-component chain-link

Theorem B [Ichihara-J.-Kabaya]

Dehn surgeries on C are completely classified [Martelli-Petronio].

Corollary

- $N_{3,q}$ is the Seifert manifold $(D^2; (3, 1), (\frac{q-3}{2}, \frac{q-1}{2}))$.
- The others are hyperbolic.

In particular, $N_{5,5}$ is the “figure-eight knot sister manifold”.