Cosmetic surgery and the $SL(2,\mathbb{C})$ Casson invariant for two-bridge knots

Kazuhiro Ichihara

Nihon University
College of Humanities and Sciences

Joint work with
Toshio Saito (Joetsu Univ. of Education)

Extended KOOK Seminar 2015
August 18, 2015 @ Kobe Univ.
Two slopes for a knot K are called **equivalent** if \exists homeo. of the exterior of K taking one slope to the other.

Two surgeries on K are called **purely cosmetic** if \exists orientation preserving homeo. between the manifolds obtained by the surgeries.
Cosmetic surgery conjecture

Two surgeries on inequivalent slopes are never purely cosmetic.

This is the Problem 1.81(A) in Kirby’s list.

Remark: There exists some example of knots admitting “chirally” cosmetic surgeries along inequivalent slopes.
Theorem 1. (2-bridge knots with at most 9 crossings)

All the two-bridge knots of at most 9 crossings other than $[9_{27}]$ admits no cosmetic surgery pairs.

Remark: $[9_{27}] = \mathcal{S}(49, 19) = C[2, 2, -2, 2, 2, -2]$
Cosmetic surgery on 2-brigde knots

K. Ichihara

Introduction
Cosmetic surgery
Conjecture
2-bridge knots with at most 9 crossings

Ingredients
Table
Family including 9_{27}
$SL(2, \mathbb{C})$
Casson invariant
Culler-Shalen norm
Computing Boundary slope

Boyer-Lins (1990)

A knot K satisfying $\Delta_{K}^\prime\prime(1) \neq 0$ has no cosmetic surgery pairs.

Remark:
$\Delta_{K}(t)$ denotes the (symmetrized) Alexander polynomial for K. They use the Casson invariant (original, $SU(2)$-version).
Cosmetic surgery on 2-brigde knots

K. Ichihara

Introduction
Cosmetic surgery
Conjecture

2-brigde knots with at most 9 crossings
Ingredients
Table
Family
including 9_{27}

\textit{SL}(2, \mathbb{C})
Casson invariant
Culler-Shalen norm
Computing Boundary slope

Boyer-Lins (1990)

A knot K satisfying $\Delta''_K(1) \neq 0$ has no cosmetic surgery pairs.

Remark:
$\Delta_K(t)$ denotes the (symmetrized) Alexander polynomial for K. They use the Casson invariant (original, $SU(2)$-version).

Ni-Wu (2011)

Let K be a nontrivial knot in S^3 and $r_1, r_2 \in \mathbb{Q}$ two slopes. If the surgeries along r_1 and r_2 are purely cosmetic, then r_1, r_2 satisfy that

(a) $r_1 = -r_2$,
(b) $q^2 \equiv -1 \mod p$ for $r_1 = p/q$,
(c) $\tau(K) = 0$ (the invariant defined by Ozsváth-Szabó).

Remark: They use Heegaard Floer homology.
Cosmetic surgery on 2-brigde knots

K. Ichihara

Introduction

Cosmetic surgery

Conjecture

2-brigde knots with at most 9 crossings

Ingredients

Table

Family including 9_{27} $SL(2, \mathbb{C})$ Casson invariant

Culler-Shalen norm

Computing Boundary slope

Table: 2-bridge knots of at most 9 crossings with $\tau = 0$

<table>
<thead>
<tr>
<th>Name</th>
<th>Schubert Form</th>
<th>Alexander Polynomial</th>
<th>$\Delta_K''(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4_1</td>
<td>$S(5, 2)$</td>
<td>$t^{-1} - 3 + t$</td>
<td>2</td>
</tr>
<tr>
<td>6_1</td>
<td>$S(9, 7)$</td>
<td>$2t^{-1} - 5 + 2t$</td>
<td>4</td>
</tr>
<tr>
<td>6_3</td>
<td>$S(13, 5)$</td>
<td>$t^{-2} - 3t^{-1} + 5 - 3t + t^2$</td>
<td>2</td>
</tr>
<tr>
<td>7_7</td>
<td>$S(21, 8)$</td>
<td>$t^{-2} - 5t^{-1} + 9 - 5t + t^2$</td>
<td>-2</td>
</tr>
<tr>
<td>8_1</td>
<td>$S(13, 11)$</td>
<td>$3t^{-1} - 7 + 3t$</td>
<td>6</td>
</tr>
<tr>
<td>8_3</td>
<td>$S(17, 4)$</td>
<td>$4t^{-1} - 9 + 4t$</td>
<td>8</td>
</tr>
<tr>
<td>8_8</td>
<td>$S(25, 9)$</td>
<td>$2t^{-2} - 6t^{-1} + 9 - 6t + 2t^2$</td>
<td>4</td>
</tr>
<tr>
<td>8_9</td>
<td>$S(25, 7)$</td>
<td>$t^{-3} - 3t^{-2} + 5t^{-1} - 7 + 5t - 3t^2 + t^3$</td>
<td>4</td>
</tr>
<tr>
<td>8_{12}</td>
<td>$S(29, 12)$</td>
<td>$t^{-2} - 7t^{-1} + 13 - 7t + t^2$</td>
<td>-6</td>
</tr>
<tr>
<td>8_{13}</td>
<td>$S(29, 11)$</td>
<td>$2t^{-2} - 7t^{-1} + 11 - 7t + 2t^2$</td>
<td>2</td>
</tr>
<tr>
<td>9_{14}</td>
<td>$S(37, 14)$</td>
<td>$2t^{-2} - 9t^{-1} + 15 - 9t + 2t^2$</td>
<td>-2</td>
</tr>
<tr>
<td>9_{19}</td>
<td>$S(41, 16)$</td>
<td>$2t^{-2} - 10t^{-1} + 17 - 10t + 2t^2$</td>
<td>-4</td>
</tr>
<tr>
<td>9_{27}</td>
<td>$S(49, 19)$</td>
<td>$t^{-3} - 5t^{-2} + 11t^{-1} - 15 + 11t - 5t^2 + t^3$</td>
<td>0</td>
</tr>
</tbody>
</table>

Remark:

For alternating knots, $\tau(K) = \sigma(K)$ (signature of K) holds.
Theorem 2. (A family including 9_{27})

Let K_x be a 2-bridge knot $C[2x, 2 - 2x, 2x, 2, -2x]$ with $x \geq 1$. Then K_x admits no cosmetic surgery pairs yielding homology 3-spheres.

i.e., any $\frac{1}{n}$- and $\frac{1}{m}$-surgeries are not purely cosmetic for K_x.

Remark:
For K_x, $\Delta''_{K_x}(1) = 0$ and $\tau(K_x) = 0$ hold. In particular, $K_1 = 9_{27}$.
Key Ingredient

Definition (\(SL(2, \mathbb{C})\) Casson invariant) [very rough]

For a closed orientable 3-manifold \(\Sigma\), the \(SL(2, \mathbb{C})\) Casson invariant \(\lambda_{SL(2, \mathbb{C})}(\Sigma)\) is defined by counting the (signed) equivalence classes of representations of the fundamental group in \(SL(2, \mathbb{C})\).

Cosmetic surgery on 2-brigde knots

K. Ichihara

Introduction
Cosmetic surgery
Conjecture
2-brigde knots with at most 9 crossings
Ingredients
Table
Family including 9_{27}
$SL(2, \mathbb{C})$ Casson invariant
Culler-Shalen norm
Computing Boundary slope

Boden-Curtis (2012)

Let $K = S(\alpha, \beta)$ be a 2-brigde knot and $K(p/q)$ the 3-manifold obtained by p/q-surgery on K. Suppose that p/q is not a strict boundary slope and no p'-th root of unity is a root of $\Delta_K(t)$, where $p' = p$ if p is odd and $p' = p/2$ if p is even. Then

$$\lambda_{SL(2, \mathbb{C})}(K(p/q)) = \begin{cases} \frac{1}{2} \|p/q\|_T & \text{if } p \text{ is even}, \\ \frac{1}{2} \|p/q\|_T - (\alpha - 1)/4 & \text{if } p \text{ is odd}. \end{cases}$$

Here $\|p/q\|_T$ denotes the total Culler-Shalen seminorm for p/q.

Cosmetic surgery on 2-brigde knots

K. Ichihara

Introduction
Cosmetic surgery
Conjecture

2-brigde knots
with at most 9 crossings

Ingredients
Table

Family
including 9_{27}

$SL(2,\mathbb{C})$ Casson invariant

Culler-Shalen norm

Computing
Boundary slope

Culler-Shalen norm & Ohtsuki’s method

Boden-Curtis, based on Ohtsuki (1994)

$$||p/q||_T = \frac{1}{2} \left(-|p| + \sum_i W_i \Delta(p/q, N_i) \right)$$

Here N_1, \cdots, N_n denotes the boundary slope for K, and $W_i := \prod_j (|n_j| - 1)$ for the continued fraction expansion $[n_1, \cdots, n_m]$ associated to N_i.

Cosmetic surgery on 2-brigde knots

K. Ichihara

Introduction

Cosmetic surgery

Conjecture

2-brigde knots with at most 9 crossings

Ingredients

Table

Family including $SL(2, \mathbb{C})$

Casson invariant

Culler-Shalen norm

Computing Boundary slope

Mattman-Maybrun-Robinson (2008)

The boundary slopes of $S'(\alpha, \beta)$ are associated to the continued fractions obtained by applying the substitutions at non-adjacent positions in the simple continued fraction of α/β.

Substitution 1:

$[b_0, 2b_1, b_2, b_3, \ldots, b_n] \mapsto [b_0 + 1, (-2, 2)^{b_1-1}, -2, b_2 + 1, b_3, \ldots, b_n]$

Substitution 2:

$[b_0, 2b_1 + 1, b_2, b_3, \ldots, b_n] \mapsto [b_0 + 1, (-2, 2)^{b_1}, -b_2 - 1, -b_3, \ldots, -b_n]$

The simple continued fraction is the unique one with all terms positive and greater than 1.