Chirally cosmetic fillings on a hyperbolic manifold

In Dae Jong

Kindai University

joint work with
Kazuhiro Ichihara (Nihon University)

The 11th East Asian School of Knots and Related Topics @Osaka City University
2016/1/28 16:10–16:30
§1. Definition of cosmetic fillings

§2. Examples and Conjectures

§3. Main Result (which gives a counterexample of a conjecture)

§4. Construction of Main Result
§1. Definitions

X: an oriented compact 3-mfd. with $\partial X = T^2$

$X(r)$: the 3-mfd. obtained by r-Dehn filling on X ($r \in \mathbb{Q} \cup \{1/0\}$)

Definition (cosmetic filling)

r_1-filling and r_2-filling on X are **cosmetic**

$$\iff \exists h: X(r_1) \to X(r_2): \text{homeo.}$$
§1. Definitions

X: an oriented compact 3-mfd. with $\partial X = T^2$

$X(r)$: the 3-mfd. obtained by r-Dehn filling on X ($r \in \mathbb{Q} \cup \{1/0\}$)

Definition (cosmetic filling)

r_1-filling and r_2-filling on X are **cosmetic**

\[
\iff \exists h : X(r_1) \to X(r_2) : \text{homeo.}
\]

- Cosmetic fillings are **purely** (resp. **chirally**)

\[
\iff h \text{ is orientation preserving (resp. reversing).}
\]
§1. Definitions

X: an oriented compact 3-mfd. with $\partial X = T^2$

$X(r)$: the 3-mfd. obtained by r-Dehn filling on X ($r \in \mathbb{Q} \cup \{1/0\}$)

Definition (cosmetic filling)

r_1-filling and r_2-filling on X are **cosmetic**

$$\iff \exists h: X(r_1) \to X(r_2): \text{homeo.}$$

- Cosmetic fillings are **purely** (resp. **chirally**)
 $$\iff h \text{ is orientation preserving (resp. reversing).}$$

- Cosmetic fillings are **mundane**
 $$\iff \exists \varphi: X \to X: \text{homeo. s.t. } \varphi(r_1) = r_2.$$

- Cosmetic fillings are **exotic** $$\iff \text{These are not mundane.}$$
Example (mundane cosmetic fillings)

- **U:** the unknot in S^3, $n \in \mathbb{Z}$

 $\Rightarrow \frac{1}{n}$- and $1/0$-filling on $E(U)$ are truly mundane cosmetic.

 \[
 \frac{1}{n} \quad \cong \quad \frac{1}{0}
 \]

- **K:** an amphicheiral knot in S^3, $r \in \mathbb{Q} \setminus \{0\}$

 $\Rightarrow (\pm r)$-fillings on $E(K)$ are chirally mundane cosmetic.
§2. Examples and Conjectures

Example (mundane cosmetic fillings)

- \(U \): the unknot in \(S^3 \), \(n \in \mathbb{Z} \)
 \[\Rightarrow 1/n \text{-} \text{and} \ 1/0 \text{-} \text{filling on } E(U) \text{ are truely mundane cosmetic.} \]
 \[\frac{1}{n} \text{ } \approx \text{ } \frac{1}{0} \]

- \(K \): an amphicheiral knot in \(S^3 \), \(r \in \mathbb{Q} \setminus \{0\} \)
 \[\Rightarrow (\pm r) \text{-} \text{fillings on } E(K) \text{ are chirally mundane cosmetic.} \]

Interests: **exotic** cosmetic fillings

Cosmetic Surgery Conjecture

Cosmetic fillings are never purely and exotic.

Today’s target: **chirally and exotic** cosmetic fillings
Example [Bleiler-Hodgson-Weeks]

∃ a hyperbolic knot $K \subset S^2 \times S^1$ s.t. $E(K)$ admits chirally exotic cosmetic fillings yielding $L(49, \pm 18)$. ($L(49, -18) = L(49, 19)$)

Conjecture [Bleiler-Hodgson-Weeks]

Cusped hyperbolic manifolds admit no exotic cosmetic fillings, truly or chirally, yielding hyperbolic mfds.
§2. Examples and Conjectures

Example [Bleiler-Hodgson-Weeks]

\[\exists \text{ a hyperbolic knot } K \subset S^2 \times S^1 \text{ s.t. } E(K) \text{ admits chirally exotic cosmetic fillings yielding } L(49, \pm 18). \quad (L(49, -18) = L(49, 19)) \]

Conjecture [Bleiler-Hodgson-Weeks]

Cusped hyperbolic manifolds admit no exotic cosmetic fillings, truly or chirally, yielding hyperbolic mfds.

We give a counterexample for the chirally case.
§3. Main Result

Main Theorem [Ichihara-J.]

\[\exists \text{a hyperbolic manifold admitting exotic chirally cosmetic fillings which yield hyperbolic manifolds.} \]
§4. Construction of Main Result

L: a link in S^3, \hspace{1cm} L': a link obtained from L by a banding

Definition (chirally cosmetic banding)

A banding is said to be **chirally cosmetic** if
\[\iff \exists h: S^3 \to S^3 : \text{ori. reversing homeo. s.t. } h(L) = L'. \]

Lemma ("Montesinos trick")

K: a knot in S^3 admitting a **chirally cosmetic** banding

Σ_K: the double branched cover of S^3 branched along K

\[\implies \] We have **chirally cosmetic fillings** on the exterior of a knot in Σ_K.
Proposition [Ichihara-J.]

$9_{27} = S(49, 18)$ admits a cosmetic banding as follows:

Remark

- This is obtained from the cosmetic fillings of [B.-H.-W.].
- $9_{27} = C(1, 1, 1, 2, -1, -1, -1, -2) = C(2, 2, -2, 2, 2, -2)$
- 9_{27} is a symmetric union of 5_2. In particular, it is ribbon.
§4. Construction of Main Result

9_{27} can be obtained as follows:
§4. Construction of Main Result

This yields many chirally cosmetic banding by adding twists of the tangles, or increasing the number of tangles from 3×2 to $n \times 2$, ...
This yields many chirally cosmetic banding by
- adding twists of the tangles, or
- increasing the number of tangles from 3×2 to $n \times 2$, ...
§4. Construction of Main Result

The followings are shown by using computer programs SnapPy and hikmot.

- Σ_K and $\Sigma_K \setminus \bar{K}$ are hyperbolic.
- The slopes 3 and 1/0 on $\partial N(\bar{K})$ in Σ_K are inequivalent.
 (i.e. these cosmetic fillings are exotic.)