On a chirally cosmetic filling

In Dae Jong

Kindai University

joint work with
Kazuhiro Ichihara (Nihon University)

E-KOOK Seminar 2016
@Osaka Electro-Communication University
2016/8/24 10:00–10:30
Definition

\(X\) : an oriented compact 3-mfd. with \(\partial X = T^2\)

\(X(r)\) : the 3-mfd. obtained by \(r\)-Dehn filling on \(X\) \((r : \text{slope})\)

Definition (cosmetic filling)

\(r_1\)-filling and \(r_2\)-filling on \(X\) are **purely** (resp. **chirally**) cosmetic

\[\iff \exists h: X(r_1) \to X(r_2): \text{ori. preserving (resp. reversing) homeo.}\]
Definition

X : an oriented compact 3-mfd. with $\partial X = T^2$

$X(r)$: the 3-mfd. obtained by r-Dehn filling on X (r : slope)

Definition (cosmetic filling)

r_1-filling and r_2-filling on X are purely (resp. chirally) cosmetic

$\overset{\text{def}}{\iff} \exists h : X(r_1) \to X(r_2)$: ori. preserving (resp. reversing) homeo.

- **mundane** $\overset{\text{def}}{\iff} \exists \phi : X \to X$: homeo. s.t. $\phi(r_1) = r_2$
- **exotic** $\overset{\text{def}}{\iff}$ not mundane
Definition

X: an oriented compact 3-mfd. with $\partial X = T^2$

$X(r)$: the 3-mfd. obtained by r-Dehn filling on X (r: slope)

Definition (cosmetic filling)

r_1-filling and r_2-filling on X are purely (resp. chirally) cosmetic
\[\text{def} \iff \exists h: X(r_1) \to X(r_2): \text{ori. preserving (resp. reversing) homeo.} \]

- mundane $\iff \exists \phi: X \to X: \text{homeo. s.t. } \phi(r_1) = r_2$
- exotic \iff not mundane

ex. Purely mundane cosmetic fillings: $\frac{1}{n} \cong \frac{1}{0}

ex. For all amphichiral knot K and $\forall r \in \mathbb{Q}$,

$(\pm r)$-fillings on the exterior $E(K)$ are chirally mundane cosmetic.
Cosmetic Surgery Conjecture

Cosmetic Surgery Conj. [Problem 1.81(A)] in Kirby’s list

Cosmetic fillings are never purely and exotic.
Cosmetic Surgery Conjecture

Cosmetic Surgery Conj. [Problem 1.81(A)] in Kirby’s list

Cosmetic fillings are never purely and exotic.

Proposition [Mathieu ’92]

\[X = E(\text{the trefoil knot}), \quad (k \geq 0) \]

\[\Rightarrow \frac{18k + 9}{3k + 1} \quad \text{and} \quad \frac{18k + 9}{3k + 2} \]-fillings on \(X \) are chirally exotic cosmetic.

Remark

In Mathieu’s example, \(X \) and the resultants are Seifert.
Proposition [Bleiler-Hodgson-Weeks ’91]

\exists a hyperbolic knot \(K \subset S^2 \times S^1 \) s.t. \(E(K) \) admits chirally exotic cosmetic fillings yielding \(L(49, \pm 18) \).

\((L(49, -18) = L(49, 19)) \)
Proposition [Bleiler-Hodgeon-Weeks ’91]

\[\exists a \text{ hyperbolic knot } K \subset S^2 \times S^1 \text{ s.t. } E(K) \text{ admits chirally exotic cosmetic fillings yielding } L(49, \pm 18). \quad (L(49, -18) = L(49, 19)) \]

Conjecture [B.-H.-W. ’91] cf. Kirby’s list [Problem 1.81(B)]

Cusped hyperbolic manifolds admit NO exotic cosmetic fillings, **purely** or **chirally**, which yield hyperbolic manifolds.
Result (counterexample of [B.-H.-W.]’s conjecture)

Theorem [Ichihara-J. ’16]

\[\exists \text{ a hyperbolic manifold admitting chirally exotic cosmetic fillings which yield hyperbolic manifolds.} \]
Construction - banding and the Montesinos trick -

$L \subset S^3$, L': a link obtained from L by a banding

Definition (chirally cosmetic banding)

A banding is chirally cosmetic $\iff L$ is ambient isotopic to $(L')!$
Construction - banding and the Montesinos trick -

$L \subset S^3$, L': a link obtained from L by a banding

\[L \subset S^3, \quad L' : \text{a link obtained from } L \text{ by a banding} \]

\[\xymatrix{ L \ar[rr]^{\text{banding}} & & L' } \]

Definition (chirally cosmetic banding)

A banding is **chirally cosmetic** $\iff L$ is ambient isotopic to $(L')!$

Lemma (the Montesinos trick)

\(K \): a knot in \(S^3 \) admitting a **chirally cosmetic banding**

\(\Sigma_K \): the double branched cover of \(S^3 \) branched along \(K \)

\(\implies \) We have **chirally cosmetic fillings** on the exterior of a knot in \(\Sigma_K \).
Construction - chirally cosmetic banding on 9_{27} -

Proposition [Ichihara-J.]

$9_{27} = S(49, 18)$ admits a **chirally cosmetic banding**.

Remark

- This is obtained from the *chirally exotic* cosmetic fillings of [B.-H.-W.] by using the Montesinos trick.
- $9_{27} = C(1, 1, 1, 2, -1, -1, -1, -2) = C(2, 2, -2, 2, 2, -2)$
Construction - chirally cosmetic banding on 9_{27} -

9_{27} can be obtained as follows:
Construction - chirally cosmetic banding on 9_{27} -

This yields many chirally cosmetic banding by adding twists of the tangles, or increasing the number of tangles from 3×2 to $n \times 2$, ...
Construction - chirally cosmetic banding on 9_{27} -

This yields many chirally cosmetic banding by

- adding twists of the tangles, or
- increasing the number of tangles from 3×2 to $n \times 2$, ...
Construction - a generalization of 9_{27} -

Proposition [Ichihara-J.]
The knot K admits a chirally cosmetic banding.
Construction - applying the Montesinos trick -
Construction

To show: Σ_K and $\Xi := \overline{\Sigma}_K$ are hyperbolic, Cosmetic fillings (1/0- and 3-fillings) on \overline{K} are exotic.
To show:

- Σ_K and $X := \Sigma_K \setminus \bar{K}$ are hyperbolic,
- Cosmetic fillings (1/0- and 3-fillings) on \bar{K} are exotic.
Σ_K and X are hyperbolic.

1. Using \textit{SnapPy}, we can obtain positively oriented triangulations of Σ_K, X, $X(1/0)$, and $X(3)$.

2. Then \textit{hikmot} certifies these four manifolds are hyperbolic.

\[
\text{vol}(\Sigma_K) = 10.01776364\ldots, \\
\text{vol}(X) = 17.66121174\ldots, \\
\#(\text{tetrahedra of triangulation of } \Sigma_K) = 12, \\
\ldots\text{etc...}
\]

Reference

Lemma [Bleiler-Hodgson-Weeks ’91]

\(X : \) 1-cusped hyperbolic 3-mfd.

\(X \) is chiral \(\Rightarrow \) \(\exists \) self-homeo. on \(X \) changing a slope into the other.

\(\implies \) It suffices to show that \(X (= \Sigma_K \setminus \tilde{K}) \) is chiral.
1/0- & 3-fillings on \bar{K} are exotic

Lemma [Bleiler-Hodgson-Weeks ’91]

X : 1-cusped hyperbolic 3-mfd.
X is chiral $\Rightarrow \nexists$ self-homeo. on X changing a slope into the other.

\Rightarrow It suffices to show that $X(= \Sigma_K \setminus \bar{K})$ is chiral.

1. Using a code introduced in [Dunfield-Hoffman-Licata], we can certify a given triangulation is canonical.

2. Then, using *SnapPy*, we can certify X is chiral.

Reference

Result of our check (Thanks to Masai)

JongsMacBook:pyt InDaeJong$ python test.py
hikmot says
Manifold "positive_NewExDoubleBranchedCover.tri" is hyperbolic

hikmot says
Manifold "positive_NewExSD10.tri" is hyperbolic

hikmot says
Manifold "positive_NewExSD31.tri" is hyperbolic

hikmot says
Manifold "NewExSD.tri" is hyperbolic

SnapPy says
positive_NewExDoubleBranchedCover.tri is isometric to positive_NewExSD10.tri

SnapPy says
positive_NewExDoubleBranchedCover.tri is isometric to positive_NewExSD31.tri

Using code by Dunfield–Hoffman–Licata...
Is the triangulation of NewExSD.tri_filled canonical?
True
Is NewExSD.tri_filled amphicheiral?
False