Minimal coloring number for \(\mathbb{Z} \)-colorable links

Kazuhiro Ichihara

Nihon University
College of Humanities & Sciences

Joint work with E. Matsudo (Nihon Univ.)

Knots in Tsushima, Sep 7, 2016
Let L be a link, and D a diagram of L.

A map $\gamma : \{\text{arcs of } D\} \to \mathbb{Z}$ is called a \mathbb{Z}-coloring on D if it satisfies the condition $2\gamma(a) = \gamma(b) + \gamma(c)$ at each crossing of D with the over arc a and the under arcs b and c.

A \mathbb{Z}-coloring which assigns the same color to all the arcs of the diagram is called the trivial \mathbb{Z}-coloring.
Example
Z-colorable link

L is Z-colorable if \exists a diagram of L with a non-trivial Z-coloring.

Remark

L is Z-colorable $\iff \det(L) = 0$

Any knot K is non-Z-colorable since $\det(K)$ is odd.
Let \(L \) be a \(\mathbb{Z} \)-colorable link. Let us consider the cardinality of the image of a non-trivial \(\mathbb{Z} \)-coloring on a diagram of \(L \).

Minimal coloring number

We call the minimum of such cardinalities among all non-trivial \(\mathbb{Z} \)-colorings on diagrams of \(L \) the *minimal coloring number* of \(L \), and denote it by \(\mincol_{\mathbb{Z}}(L) \).
Let L be a \mathbb{Z}-colorable link.

Theorem 1

If L is non-splittable, then $\mincol_{\mathbb{Z}}(L) \geq 4$.
Let L be a \mathbb{Z}-colorable link.

Theorem 1
If L is non-splittable, then $\text{mincol}_\mathbb{Z}(L) \geq 4$.

Proposition
If the crossing number of L is at most 9, then $\text{mincol}_\mathbb{Z}(L) = 4$, i.e., L can be colored by four colors.
Let L be a \mathbb{Z}-colorable link.

Theorem 1

If L is non-splittable, then $\mincol_{\mathbb{Z}}(L) \geq 4$.

Proposition

If the crossing number of L is at most 9, then $\mincol_{\mathbb{Z}}(L) = 4$, i.e., L can be colored by four colors.

Question

How many colors are enough to color?
Example

Simple \mathbb{Z}-coloring
\mathbb{Z}-coloring by 5 colors
Simple \mathbb{Z}-coloring

Let L be a \mathbb{Z}-colorable link, γ a \mathbb{Z}-coloring on a diagram D of L.

Simple \mathbb{Z}-coloring

We call γ a simple \mathbb{Z}-coloring if $\exists d \in \mathbb{N}$ such that for all the crossings in D, the differences between the colors of the over arcs and the under arcs are 0 or d.

![Diagram of a link with numbers labeling crossings and arcs colored with numbers]

1. 2
2. 0
3. 1
4. 3
5. 2
6. 1
Theorem 2

Let \(L \) be a non-splittable \(\mathbb{Z} \)-colorable link. If there exists a simple \(\mathbb{Z} \)-coloring on a diagram of \(L \), then \(\mincol_{\mathbb{Z}}(L) = 4 \).
Theorem 3

If a non-splittable link L admits a \mathbb{Z}-coloring γ such that $\#\text{Im}(\gamma) = 5$, then $\text{mincol}_\mathbb{Z}(L) = 4$.

Proposition

If a \mathbb{Z}-coloring γ satisfies $\#\text{Im}(\gamma) = 5$ and $\text{min\text{Im}}(\gamma) = 0$, then $\text{Im}(\gamma) = \{0, 1, 2, 3, 4\}, \{0, 1, 2, 3, 5\}, \{0, 1, 2, 3, 6\}, \{0, 1, 2, 4, 7\}, \{0, 2, 3, 4, 5\}, \{0, 3, 4, 5, 6\}$ or $\{0, 3, 5, 6, 7\}$, up to scale.
In the case $\text{Im}(\gamma) = \{0, 1, 2, 3, 5\}$
In the case $\text{Im}(\gamma) = \{0, 1, 2, 3, 5\}$
In the case $\text{Im}(\gamma) = \{0, 1, 2, 4, 7\}$
Question

For any non-splittable \mathbb{Z}-colorable link L, $\text{mincol}_\mathbb{Z}(L) = 4$?

Question

Can any non-splittable \mathbb{Z}-colorable link admit a simple \mathbb{Z}-coloring?
Thank you for your attention.