Hyperbolic small knots in lens spaces

Kazuhiro Ichihara

Nihon University
College of Humanities & Sciences

Tohoku Knot Seminar, Sendai, Oct. 16, 2016
Table of contents

Introduction

Lens spaces

Spherical manifolds

Questions
Historical remarks (1)

In 1961/62, W. Haken introduced incompressible surface.
In 1961/62, W. Haken introduced incompressible surface.

M : a compact orientable 3-manifold

M is called sufficiently large if it contains a properly embedded (two-sided) incompressible surface. [Waldhausen, 1968]

M is called Haken if it is irreducible and sufficiently large.
In 1968, F. Waldhausen showed the following by using hierarchy.

Theorem (Topological rigidity).

Let M and N be 3-manifolds. Suppose M is Haken, and $\pi_1(M) \cong \pi_1(N)$ preserving peripheral structures. Then M and N are homeomorphic.

Theorem.

The universal cover of a Haken manifold is homeomorphic to \mathbb{R}^3.
Historical remarks (3)

In 1970’s, W. Thurston showed the following by using hierarchy.

The Geometrization for Haken manifolds.

The interior of every Haken manifold has a canonical decomposition into pieces which have geometric structures.
In 1970’s, W. Thurston showed the following by using hierarchy.

The Geometrization for Haken manifolds.

The interior of every Haken manifold has a canonical decomposition into pieces which have geometric structures.

In 2013, I. Agol showed the following.

Virtual Haken Theorem

Every compact, orientable, irreducible 3-manifold with infinite π_1 is virtually Haken, i.e., finitely covered by a Haken manifold.
Historical remarks (4)

Is every 3-manifold is Haken?
Historical remarks (4)

Is every 3-manifold is Haken?

No!

All but finitely many 3-manifold obtained by Dehn surgery on the figure-eight knot is non-Haken. [Thurston]

A. Hatcher, 1982

All but finitely many 3-manifold obtained by Dehn surgery on a small knot is non-Haken.
Historical remarks (4)

Is every 3-manifold is Haken?

No!

All but finitely many 3-manifold obtained by Dehn surgery on the figure-eight knot is non-Haken. [Thurston]

A. Hatcher, 1982

All but finitely many 3-manifold obtained by Dehn surgery on a small knot is non-Haken.

Open Problem. [c.f. Rubinstein]

When 3-manifolds become Haken/non-Haken?
Definitions

Small manifold
An irreducible 3-manifold M is called small if all the closed surfaces in M are compressible or parallel to the boundary of M.

Small knot
A knot in a 3-manifold is called small if its exterior is small.
Examples

The following are examples of small knots.

- torus knot (in S^3 and lens spaces)
- 2-bridge knot in S^3 (Hatcher-Thurston)
- atoroidal genus one fibered knot
 (Floyd-Hatcher, Culler-Jaco-Rubinstein)
- Montesinos knot of length at most 3 (Oertel)
- some closed 3- or 4-braids (Boyer-Zhang)
- some knots in Sapphire spaces (Matsuda)
Table of contents

Introduction

Lens spaces

Spherical manifolds

Questions
Lopez Conjecture

Conjecture [Lopez, 1993] (c.f. Rubinstein)

Every closed orientable irreducible small 3-manifold contains a small knot.

Lopez Conjecture

Conjecture [Lopez, 1993] (c.f. Rubinstein)

Every closed orientable irreducible small 3-manifold contains a small knot.

Remark

We can always find a non-hyperbolic knot in a small SFS. e.g., torus knot in lens space.
Lopez Conjecture

Conjecture [Lopez, 1993] (c.f. Rubinstein)

Every closed orientable irreducible small 3-manifold contains a small knot.

Remark

We can always find a non-hyperbolic knot in a small SFS. e.g., torus knot in lens space.

How about hyperbolic knots?
Lens space

<table>
<thead>
<tr>
<th>“Theorem” [Lopez, 1993]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every small Seifert fibered 3-manifold contains infinitely many hyperbolic small knots.</td>
</tr>
</tbody>
</table>
Lens space

“Theorem” [Lopez, 1993]

Every small Seifert fibered 3-manifold contains infinitely many hyperbolic small knots.

It was pointed out by H. Matsuda that its proof is incomplete (contains severe gap, remark after Conjecture 1.5, p.150).

Lens space

“Theorem” [Lopez, 1993]

Every small Seifert fibered 3-manifold contains infinitely many hyperbolic small knots.

It was pointed out by H. Matsuda that its proof is incomplete (contains severe gap, remark after Conjecture 1.5, p.150).

Theorem 1.

Every lens space contains infinitely many hyperbolic small knot.

Remark: Also holds the same for $S^2 \times S^1$.
Outline of Proof (1)

Let $L(p, q)$ be the lens space for coprime integers p and $q > 0$.
Let $L(p, q)$ be the lens space for coprime integers p and $q > 0$.

Consider the following 2-bridge link $L_k = K \cup K'$.

The 2-bridge knot with $C(2, 2k, -2) \& S(4k - 1, 8k)$.

Assumption:

$4k \neq \pm p/q$
Performing Dehn surgery on $K' \subset L_k$ along the slope $-p/q$, we obtain $L(p, q)$ and a knot K in it.

Lemma. The knot K is a hyperbolic knot in $L(p, q)$.
Performing Dehn surgery on $K' \subset L_k$ along the slope $-p/q$, we obtain $L(p, q)$ and a knot K in it.

Lemma.

The knot K is a hyperbolic knot in $L(p, q)$.

by the classification of exceptional surgeries on a component of 2-bridge link, obtained in [I., Archiv. Math. 2012].
It suffices to show that K is a small knot.

Let $E(K)$ be the exterior of K in $L(p, q)$.
Outline of Proof (3)

It suffices to show that K is a small knot.

Let $E(K)$ be the exterior of K in $L(p, q)$.

Suppose:

K is not a small knot in $L(p, q)$, i.e.,

$\exists F$: closed incompressible surface of genus ≥ 2 in $E(K)$.

Outline of Proof (3)

It suffices to show that K is a small knot.

Let $E(K)$ be the exterior of K in $L(p, q)$.

Suppose:

K is not a small knot in $L(p, q)$, i.e.,

$\exists F$: closed incompressible surface of genus ≥ 2 in $E(K)$.

$\Rightarrow \exists F'$: essential surface with boundary on $\partial N(K')$ of slope $-p/q$ in $E(L_k)$.
Perform meridional compressions on F' for K.
Outline of Proof (4)

⇒ Perform meridional compressions on F' for K.

⇒ We have an essential surface in $E(L_k)$ with (possible) boundary on K of slope $1/0$, and with boundary on K' of slope $-p/q$.
Outline of Proof (5)

Such surfaces, or precisely, such boundary slopes for 2-bridge links are completely classified, and \exists \text{algorithm} to compute them. [Floyd-Hatcher, Lash, Hoste-Shanahan]
Outline of Proof (5)

Such surfaces, or precisely, such boundary slopes for 2-bridge links are completely classified, and \(\exists \) algorithm to compute them. [Floyd-Hatcher, Lash, Hoste-Shanahan]

Boundary slope pairs for \(L_k \), [Hoste-Shanahan, §5, Table 4]

<table>
<thead>
<tr>
<th>(\partial)-slopes</th>
<th>restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>(0 \leq t \leq \infty)</td>
</tr>
<tr>
<td>((0, \phi), (\phi, 0))</td>
<td>(0 \leq t \leq \infty, k > 1)</td>
</tr>
<tr>
<td>((-4k, \phi), (\phi, -4k))</td>
<td>(0 \leq t \leq 1)</td>
</tr>
<tr>
<td>((-4k, -2), (-2, -4k))</td>
<td>(1 \leq t \leq \infty)</td>
</tr>
<tr>
<td>((2t^{-1}, 2t))</td>
<td>(-1 \leq s \leq 1)</td>
</tr>
<tr>
<td>((-2t^{-1}, -2t))</td>
<td></td>
</tr>
<tr>
<td>((-2t^{-1} + 2 - 4k, -2t))</td>
<td></td>
</tr>
<tr>
<td>((-2t^{-1}, 2 - 4k - 2t))</td>
<td></td>
</tr>
<tr>
<td>((-1 - 2k + (2k - 1)s, -1 - 2k - (2k - 1)s))</td>
<td></td>
</tr>
</tbody>
</table>

Both \(t \) and \(s \) are rational parameters.
Table of contents

Introduction

Lens spaces

Spherical manifolds

Questions
Spherical manifolds

Fact (c.f., [Seifert], …, [Perelman])

3-manifolds with finite π_1 is either of type C, D, T, O, or I.

Remark: Such 3-manifolds are all small, and
- **C-type:** lens space
- **D-type:** prism manifold
Spherical manifolds

Fact (c.f., [Seifert], ... , [Perelman])

3-manifolds with \(\text{finite } \pi_1\) is either of type C, D, T, O, or I.

Remark: Such 3-manifolds are all small, and

- **C-type:** lens space
- **D-type:** prism manifold

“Theorem” 2.

“Most” spherical 3-manifolds of type T, O, or I contain hyperbolic small knots.
Strategy of Proof

Fact (c.f. [Moser], [Doig])

Up to orientation, any manifold of type T, O, or I may be described as $(-1; (2, 1), (3, 1), (b_3, a_3))$, which is obtained by $(6a_3 - b_3)/a_3$-surgery on the right-hand trefoil.
Strategy of Proof

Fact (c.f. [Moser], [Doig])

Up to orientation, any manifold of type \mathbf{T}, \mathbf{O}, or \mathbf{I} may be described as $(-1; (2, 1), (3, 1), (b_3, a_3))$, which is obtained by $(6a_3 - b_3)/a_3$ -surgery on the right-hand trefoil.

Note:

The trefoil is obtained by (-1)-surgery on $K' \subset L_1$.
Strategy of Proof

Fact (c.f. [Moser], [Doig])

Up to orientation, any manifold of type T, O, or I may be described as $(-1; (2, 1), (3, 1), (b_3, a_3))$, which is obtained by $(6a_3 - b_3)/a_3$ -surgery on the right-hand trefoil.

Note:

The trefoil is obtained by (-1)-surgery on $K' \subset L_1$.

\Rightarrow Similar arguments as before can (may) be applied.
Table of contents

Introduction

Lens spaces

Spherical manifolds

Questions
Remaining cases for finite π_1

Prism manifold $P(n, m)$

Seifert manifold: $(-1; (2, 1), (2, 1), (n, m))$ with base S^2.
Here $n > 0$ & m: coprime to n.

$(\text{twisted } I\text{-bundle} / \text{Klein bottle}) \cup_{(n,m)} (\text{Solid torus})$

Question.

Does every prism manifold contain small knots?
Further questions

Question.
Does every small Seifert manifold contain small hyperbolic knots?

Question.
Does every random manifold contain small hyperbolic knots?