Amphicheiral 3-manifolds not coming from amphicheiral null-homologous knot complements

In Dae Jong

Kindai University

joint work with
Kazuhiro Ichihara (Nihon University)
Kouki Taniyama (Waseda University)

E-KOOK Seminar 2017
@Osaka Institute of Technology
2017/8/28 13:30–14:00
Amphicheiral manifold

\(M \): an oriented compact 3-manifold

Definition

\[M : \text{amphicheiral} \iff \exists h : M \to M : \text{orientation reversing homeo}. \]
Amphicheiral manifold

\(M \): an oriented compact 3-manifold

Definition

\(M : \text{amphicheiral} \overset{\text{def}}{\iff} \exists h : M \rightarrow M : \text{orientation reversing homeo.} \)

Examples

- The 3-sphere \(S^3 \) is amphicheiral.

Remark: These examples are not hyperbolic.
Amphicheiral manifold

M : an oriented compact 3-manifold

Definition

$M : \text{amphicheiral} \iff \exists h : M \rightarrow M : \text{orientation reversing homeo.}$

Examples

- The 3-sphere S^3 is amphicheiral.
- The lens space $L(p, q)$ is amphicheiral iff $q^2 \equiv -1 \mod p$.
 - $L(5, 1)$ is not amphicheiral (chiral). ($\therefore 1^2 = 1 \not\equiv -1 \mod 5$)
 - $L(5, 2)$ is amphicheiral. ($\because 2^2 = 4 \equiv -1 \mod 5$)
- For $\forall n \in \mathbb{N}$, $L(n^2 + 1, n)$ is amphicheiral.

Remark: These examples are not hyperbolic.
Amphicheiral manifold

\(M \) : an oriented compact 3-manifold

Definition

\[M \text{ : amphicheiral} \iff \exists h : M \to M : \text{orientation reversing homeo.} \]

Examples

- The 3-sphere \(S^3 \) is amphicheiral.
- The lens space \(L(p, q) \) is amphicheiral iff \(q^2 \equiv -1 \mod p \).
 - \(L(5, 1) \) is not amphicheiral (chiral). (\(\therefore 1^2 = 1 \equiv -1 \mod 5 \))
 - \(L(5, 2) \) is amphicheiral. (\(\therefore 2^2 = 4 \equiv -1 \mod 5 \))
- For \(\forall n \in \mathbb{N} \), \(L(n^2 + 1, n) \) is amphicheiral.

Remark: These examples are not hyperbolic.
Amphicheiral hyperbolic manifold

\(N \): the magic manifold

Remark

Most of the hyperbolic mfds with small volume are obtained by Dehn filling on \(N \).

Proposition [Martelli-Petroino (2006)]

\[\{ \text{amphi. 1-cusped hyp. mfd. obtained by Dehn filling on } N \} = \{ S^3 \setminus 4_1, \text{ its sibling} \} \]

- Amphicheiral hyperbolic 3-manifolds are quite sporadic.
Amphicheiral hyperbolic manifold

\(N \) : the magic manifold

Remark

Most of the hyperbolic mfds with small volume are obtained by Dehn filling on \(N \).

Proposition [Martelli-Petroino (2006)]

\[
\{\text{amphi. 1-cusped hyp. mfd. obtained by Dehn filling on } N\} = \{S^3 \setminus 4_1, \text{ its sibling}\}
\]

- Amphicheiral hyperbolic 3-manifolds are quite sporadic.
- \(K \) : amphicheiral hyperbolic knot in \(S^3 \)
 \(\Rightarrow S^3 \setminus K \) is amphicheiral 1-cusped hyperbolic 3-mfd.
Amphicheiral hyperbolic manifold

\(N : \) the magic manifold

Remark

Most of the hyperbolic mfds with small volume are obtained by Dehn filling on \(N \).

Proposition [Martelli-Petroino (2006)]

\(\{ \text{amphi. 1-cusped hyp. mfd. obtained by Dehn filling on } N \} \)
\[= \{ S^3 \setminus 4_1 , \text{its sibling} \} \]

- Amphichiral hyperbolic 3-manifolds are quite sporadic.
- \(K : \) amphichiral hyperbolic knot in \(S^3 \)
 \[\Rightarrow S^3 \setminus K \text{ is amphichiral 1-cusped hyperbolic 3-mfd.} \]

Natural to ask the following

\(\exists \) amphichiral (1-cusped hyperbolic) manifold
not coming from amphichiral knot complements
Observation

$h: S^3 \rightarrow S^3$: reflection, $K \subset S^3$: amphi. knot, p/q : slope for K
$\Rightarrow h(p/q) = -p/q$, and $\Delta(p/q, -p/q) = 2|pq| : \text{even.}$
Observation

\[h : \mathbb{S}^3 \to \mathbb{S}^3 : \text{reflection, } K \subset \mathbb{S}^3 : \text{amphi. knot, } p/q : \text{slope for } K \Rightarrow h(p/q) = -p/q, \text{ and } \Delta(p/q, -p/q) = 2|pq| : \text{even}. \]

Definition

\[M : \text{amphicheiral manifold, } h : M \to M : \text{ori.-rev. homeo.} \]

\[K \subset M : \text{amphicheiral knot} \iff K \sim h(K) \text{ in } M. \]

Lemma

\[M : \text{amphi. manifold, } h : M \to M : \text{ori.-rev. homeo.} \]

\[K \subset M : \text{amphi. null-homologous knot, } p/q : \text{a slope for } K \Rightarrow h(p/q) = -p/q, \text{ and } \Delta(p/q, -p/q) = 2|pq| : \text{even}. \]
Amphicheiral knot complement

Observation

\[h: S^3 \to S^3 : \text{reflection}, \ K \subset S^3 : \text{amphi. knot}, \ \frac{p}{q} : \text{slope for} \ K \Rightarrow h(\frac{p}{q}) = -\frac{p}{q}, \ \text{and} \ \Delta(\frac{p}{q}, -\frac{p}{q}) = 2|pq| : \text{even}. \]

Definition

\[M : \text{amphicheiral manifold}, \quad h: M \to M : \text{ori.-rev. homeo.} \]
\[K \subset M : \text{amphicheiral knot} \iff K \sim h(K) \text{ in } M. \]

Lemma

\[M : \text{amphi. manifold}, \quad h: M \to M : \text{ori.-rev. homeo.} \]
\[K \subset M : \text{amphi. null-homologous knot}, \quad \frac{p}{q} : \text{a slope for} \ K \Rightarrow h(\frac{p}{q}) = -\frac{p}{q}, \ \text{and} \ \Delta(\frac{p}{q}, -\frac{p}{q}) = 2|pq| : \text{even}. \]

Q. \(\exists \) hyp. amphi. mfd. not coming from such knot complement?
Known example (figure-eight sibling)

W : the figure-eight sibling (amphicheiral, 1-cusped hyperbolic)
Known example (figure-eight sibling)

\[W : \text{the figure-eight sibling (amphicheiral, 1-cusped hyperbolic)} \]

\[\exists \phi : W \rightarrow W : \text{orientation reversing homeo. s.t. } \phi(\infty) = -1 \]

\[\Rightarrow W \not\cong \text{amphicheiral null-homologous knot complement} \]

since \[\Delta(\infty, -1) = 1. \]
Known example (figure-eight sibling)

W : the figure-eight sibling (amphicheiral, 1-cusped hyperbolic)

$\exists \varphi : W \to W$: orientation reversing homeo. s.t. $\varphi(\infty) = -1$
$\Rightarrow W \not\cong$ amphicheiral null-homologous knot complement
since $\Delta(\infty, -1) = 1$.

$W(\infty) = L(-5, 1)$ & $W(-1) = L(5, 1)$.
Known example (figure-eight sibling)

\(W \): the figure-eight sibling (amphicheiral, 1-cusped hyperbolic)

\[\exists \phi: W \to W: \text{orientation reversing homeo. s.t. } \phi(\infty) = -1 \]
\[\Rightarrow W \not\sim \text{ amphicheiral null-homologous knot complement} \]
\[\text{since } \Delta(\infty, -1) = 1. \]

\[W(\infty) = L(-5, 1) \& W(-1) = L(5, 1). \]

Question

\(\exists \) other examples?
Main result

\[T_n := \]

\[M_n := \text{(interior of) the double branched cover over } T_n \ (n \in \mathbb{Z}) \]

Theorem [Ichihara-J.-Taniyama]

- \(M_n \) is amphicheiral, and 1-cusped hyperbolic.
- \(M_n \not\cong \forall \) amphicheiral null-homologous knot complement in any closed amphicheiral 3-mfd.

Remark: \(M_2 = W \) (the figure-eight sibling)
The mirror image $T_n!$ is obtained from T_n by $\frac{\pi}{2}$-rotation.
Amphicheirality

The mirror image $T_n!$ is obtained from T_n by $\frac{\pi}{2}$-rotation.

The lift $\tilde{h}: M_n \to M_n$ is ori.-rev. homeo. $\Rightarrow M_n$ is amphicheiral.

Since $\tilde{h}(\tilde{\mu}) = \tilde{\lambda}$ and $\Delta(\tilde{\mu}, \tilde{\lambda}) = 1$,

$M_n \not\cong \forall$ amphi. null-homologous knot complement.
Hyperbolicity – K_n –

$K_n :=$

Lemma

K_n is the two-bridge knot (or link) with Schubert’s normal form $S(n^4 - 2n^3 + 2n^2 - 2n + 1, n^3 - 2n^2 + n - 1)$.

Remark

$K_2 = \text{the torus knot of type } T(2, 5)$.
Hyperbolicity – chirally cosmetic banding –

Lemma

\[K_n \xrightarrow{\text{a banding}} K_n! \]

Remark

\[T(2, 5) \xrightarrow{\text{a banding}} T(2, 5)! \] is found by [Zeković (2015)].
Hyperbolicity – surgery description –

Replace twists to bands

Take the double branched cover

Cut at \(\infty \)

Take the double branched cover

\[-n \]

\[n \]

\[-n \]
Hyperbolicity – surgery description –

\[n - n - n = 0 \]

\[\Sigma_n := L(n^4 - 2n^3 + 2n^2 - 2n + 1, n^3 - 2n^2 + n - 1) \]

Lemma

\(M_n \) is a complement of a knot in \(\Sigma_n \).
Hyperbolicity – surgery description –

\[\Sigma_n := L(n^4 - 2n^3 + 2n^2 - 2n + 1, n^3 - 2n^2 + n - 1) \]

Lemma

\(M_n \) is a complement of a knot in \(\Sigma_n \).

Remark

\(\Sigma_n \) is chiral (i.e. not amphicheiral) since

\[(n^3 - 2n^2 + n - 1)^2 \equiv 1 \not\equiv -1 \mod (n^4 - 2n^3 + 2n^2 - 2n + 1). \]
Hyperbolicity – orientation reversing homeo –

slide

isotopy

slide

isotopy

twist on the gray component
Hyperbolicity

Theorem [Ichihara-J.-Taniyama]

\[M_n(\infty) = \Sigma_n \text{ and } M_n(0) = -\Sigma_n. \]

Lemma [Matignon (2010)]

\[\mathcal{L}: \text{a non-hyperbolic knot complement in a lens space} \]

If \(\mathcal{L}(\infty) \cong -\mathcal{L}(r) \), then \(r \neq 0 \).

\[\Rightarrow M_n \text{ is hyperbolic. } \square \]
Hyperbolicity

Theorem [Ichihara-J.-Taniyama]

\[M_n(\infty) = \Sigma_n \text{ and } M_n(0) = -\Sigma_n. \]

Lemma [Matignon (2010)]

\[\mathcal{L} : \text{a non-hyperbolic knot complement in a lens space} \]
If \(\mathcal{L}(\infty) \cong -\mathcal{L}(r) \), then \(r \neq 0 \).

\[\Rightarrow M_n \text{ is hyperbolic.} \quad \square \]

Summary: \(M_n \) is
- (1-cusped) hyperbolic,
- amphicheiral,
- \(\not\cong \) to any amphicheiral null-homologous knot complement.
Hyperbolicity

Theorem [Ichihara-J.-Taniyama]

\[M_n(\infty) = \Sigma_n \text{ and } M_n(0) = -\Sigma_n. \]

Lemma [Matignon (2010)]

\[\mathcal{L} : \text{ a non-hyperbolic knot complement in a lens space} \]
If \(\mathcal{L}(\infty) \cong -\mathcal{L}(r) \), then \(r \neq 0. \)

\[\Rightarrow \ M_n \text{ is hyperbolic. } \square \]

Summary: \(M_n \) is
- (1-cusped) hyperbolic,
- amphicheiral,
- \(\not\cong \) to any amphicheiral null-homologous knot complement.

Problem

\[M_n \not\cong \forall \text{ amphicheiral null-homologous knot complement?} \]