Thin position for incompressible surfaces in 3-manifolds

Kazuhiro Ichihara

Nihon University
College of Humanities and Sciences

Joint work with
M. Ozawa & J. Hyam Rubinstein

The 2nd Pan Pacific International Conference on Topology and Applications
Novotel Ambassador Busan, Busan, Republic of Korea
15 November, 2017
"alternating" thin position

Thin position argument:

Many good results, for knots & 3-manifolds.

M: a closed irreducible orientable 3-manifold
F: a separating closed orientable incompressible surface in M
S: a strongly irreducible Heegaard surface in M

Aim of this talk:
Put F in a kind of thin position with respect to S.
“alternating” thin position

Recall: a Heegaard splitting implies a singular foliation of M by copies of S.

S_t: the level surface $(0 < t < 1)$

H^t_1, H^t_2: the handlebodies obtained by splitting M along S_t (As $t \to 0, 1$, H^t_1 or H^t_2 converges to a graph in M)

We can assume:

- No loop in $F \cap S_t$ bounds a disk on S_t.
- For t small enough, $F \cap H^t_1$ consists of a family of meridian disks.
“alternating” thin position

\(M_+, M_- \): the two sides of \(F \)

1st step

Perform all possible boundary compressions of \(F \cap H^t_2 \) so that bands of \(S_t \) get pushed across \(F \) from \(M_- \) to \(M_+ \).

In a sense, the effect is to make \(S_t \cap M_- \) thin and \(S_t \cap M_+ \) thick.
“alternating” thin position

Fix this copy of S_t as level one and denote it by S_{t_1} with the initial S as S_{t_0} (where $F \cap H_{t_0}^1$ are meridian disks).

2nd step

Repeat the process for $H_{t_1}^2$ bounded by S_{t_1}, but this time interchanging the roles of M_+, M_- so that bands of S_{t_1} get pushed across F from M_+ to M_-. This will give a new level surface S_{t_2} for which $S_{t_2} \cap M_-$ is thick and $S_{t_2} \cap M_+$ thin.
We iterate until eventually F meets a handlebody corresponding to H^t_2 in meridian disks only, for t close to 1.

Alternating thin position

Call the obtained surface F in an “alternating” thin position.

Note:

there are a finite number of critical levels \hat{t}, for $0 < \hat{t} < 1$, so that at such a level there is a single saddle critical point.
We can find at least one thin surface which is incompressible.

Theorem.

Let F, S, M_+, M_- as above. Then either;

- there is a non-critical level t so that $S_t \cap M_+$ is incompressible and $S_t \cap M_-$ has compressing disks on both sides of S_t, or the same with M_+, M_- interchanged.

- there is a critical level \hat{t} so that $S_t \cap M_+$ (resp. $S_t \cap M_-$) is incompressible for $t < \hat{t}$ (resp. $t > \hat{t}$) with t close to \hat{t}, or the same with M_+, M_- interchanged.

- there is a critical level \hat{t} so that both $S_t \cap M_+$, $S_t \cap M_-$ are incompressible for $t > \hat{t}$ and t arbitrarily close to \hat{t}.

If we consider the Hempel distance of a Heegaard surface, we obtain the following corollary.

Corollary 1.

Under the same settings as in Theorem, suppose that S has Hempel distance at least 4. Then only the third possibility in Theorem can occur.
Corollary

Corollary 2.

Let M_+, M_- be compact orientable irreducible 3-manifolds with incompressible boundary $\partial M_+ \cong \partial M_-$. Amongst all incompressible and ∂-incompressible surfaces in M_+, M_-, choose the ones A_+, A_- with $|\partial A_+| \geq |\partial A_-|$ which minimize

$$h = |\chi(A_+)| + |\chi(A_-)| + 2(2|\partial A_+| - |\partial A_-| - 1).$$

Then h gives a lower bound for the absolute value of the Euler characteristic of a Heegaard surface of Hempel distance at least 4 in a closed 3-manifold obtained by gluing M_+ and M_- along their boundary.