Cosmetic surgeries on knots

Kazuhiro Ichihara

Nihon University, College of Humanities and Sciences

Based on joint works with

Tetsuya Ito (Kyoto Univ.), In Dae Jong (Kindai Univ.)
Toshio Saito (Joetsu Univ. Edu.),
Zhongtao Wu (Chinese Univ. of Hongkong)

ICM 2018
2018.8.2, Riocentro convention center, Rio de Janeiro, Brazil.
Dehn surgery on a knot

Let K be a knot (i.e., embedded circle) in a 3-manifold M

Dehn surgery on K (operation to produce a “NEW” 3-mfd)

1) Remove the open neighborhood of K from M.
2) Glue a solid torus back (along a slope γ).

slope : isotopy class of non-trivial simple closed curve
Cosmetic surgery conjecture

It is natural to ask:

Can distinct Dehn surgeries give the same manifold?

Conjecture. [Problem 1.81(A) in Kirby’s list]

Two surgeries on inequivalent slopes are never purely cosmetic.

- Two slopes for a knot K are called equivalent if there exists a homeomorphism of the exterior of K taking one slope to the other.
- Two surgeries on K are called purely cosmetic if there exists an orientation-preserving homeomorphism between the manifolds obtained by the surgeries.
Chirally cosmetic case

For “Orientation reversing” case, there exist (counter-) examples.

Fact. [Mathieu, 1992]

There exist knots admitting “chirally” cosmetic surgeries along inequivalent slopes.

Actually $\frac{18k+9}{3k+1}$- and $\frac{18k+9}{3k+2}$-surgeries on the trefoil knot $T_{2,3}$ in S^3 yield orientation-reversingly homeomorphic pairs for any $k \geq 0$.

Further examples were obtained by [Rong], [Bleiler-Hodgson-Weeks], [Matignon], [Hoffman-Matignon].
2-bridge knots

Proposition. (2-bridge knots with at most 9 crossings)

All the two-bridge knots of at most 9 crossings other than $9_{27} = C[2, 2, -2, 2, 2, -2]$ admits no cosmetic surgery pairs.

Theorem. [I.-Saito, 2018]

Any 2-bridge knot $C[2x, 2 - 2x, 2x, 2, -2x]$ with $x \geq 1$ admits no cosmetic surgeries yielding homology 3-spheres. i.e., any $\frac{1}{n}$- and $\frac{1}{m}$-surgeries are not purely cosmetic for K_x.

Remark: For K_x, the known restrictions cannot be applied; (original) Casson invariant & Heegaard Floer homology. Our advantage is to use $SL(2, \mathbb{C})$ Casson invariant.
Jones polynomial

Let $V_K(t)$ be the Jones polynomial of a knot K in S^3.

If a knot K satisfies either $V''_K(1) \neq 0$ or $V'''_K(1) \neq 0$, then K admits no purely cosmetic surgeries.

Corollary.

The cosmetic surgery conjecture is true for all knots with no more than 11 crossings, except possibly

$$10_{33}, 10_{118}, 10_{146}, 11a_{91}, 11a_{138}, 11a_{285}, 11n_{86}, 11n_{157}.$$

This result was extended by T. Ito [to appear, CAG].
New Example

Theorem. [I.-Jong with H.Masai, To appear in Osaka J. Math.]

There exists a hyperbolic knot with chirally cosmetic surgeries along inequivalent slopes yielding **hyperbolic** manifolds.

In the proof, Hyperbolicity & Chirailty were checked by a computer program; **HIKMOT** [Exper.Math. 2016].

This gives a **counter-example** to:

Conjecture. [Bleiler-Hodgson-Weeks, 1999]

Any hyperbolic knot admits no purely/chirally cosmetic surgeries yielding hyperbolic manifolds.
2-bridge knots

Theorem. [I-Ito-Saito, preprint]

- Let K be a 2-bridge knot of genus one. If the r- and r'-surgeries on K are chirally cosmetic, then
 1. K is amphicheiral and $r = -r'$, or
 2. K is the positive or the negative trefoil, and for some $k \in \mathbb{Z}$,

 $$\{r, r'\} = \left\{ \frac{18k + 9}{3k + 1}, \frac{18k + 9}{3k + 2} \right\}, \left\{ -\frac{18k + 9}{3k + 1}, -\frac{18k + 9}{3k + 2} \right\}.$$

- Let K be a positive 2-bridge knot with Alexander polynomial $\Delta_K(t)$ such that $\Delta_K(\zeta) \neq 0$ for any root of unity ζ. Then K admits no chirally cosmetic surgeries.

Question.

Can a non-torus, chiral knot admit chirally cosmetic surgeries?