A lower bound on the number of diagonals for polyhedra

Kazuhiro Ichihara

Nihon University, College of Humanities and Sciences

Joint work with
Shunsuke Kojima (Nihon Univ.)

“Topology and Computer 2018”
Nara Womens’ University, Oct. 14, 2018
Let M be a non-compact hyperbolic 3-manifold of finite volume.

Question.

Can we decompose M into ideal tetrahedra?

Theorem [Wada-Yamashita-Yoshida]

Suppose that M is obtained from n convex ideal polyhedra P_1, \ldots, P_n by identifying the faces in pairs. Suppose that each face of P_i ($i = 1, \ldots, n - 1$) is pasted with a face of P_n, and the possibly remaining faces of P_n glued in pairs. Then M can be decomposed into non-degenerate ideal tetrahedra by subdividing the P_i's.
Motivation

Let P be a polyhedra, and denote

$$V = V(P), \quad E = E(P), \quad F = F(P), \quad F_d = F_d(P)$$

the sets of vertices, edges, faces, and d-gonal faces of P.

Theorem 1 [Wada-Yamashita-Yoshida]

In the notion above, we have

$$|V|(|V| - 1) \geq 8|F_4| + \sum_{d \geq 5} d(d - 1)|F_d|$$

Equality in the above holds if and only if P is combinatorially equivalent to one of the polyhedra depicted in Figure 1.
Theorem 1 is equivalent to the following:

Theorem 2 [Wada-Yamashita-Yoshida]

Let $\Delta(P)$ denote the set of (interior) diagonals of a polyhedron P. Then the following always holds:

$$|\Delta(P)| \geq -\frac{3}{2} |F_3| + \sum_{d \geq 5} \frac{d}{2} |F_d|$$

Equality in the above holds if and only if P is combinatorially equivalent to one of the polyhedra depicted in Figure 1.
(calculation)

(left side) = |\Delta(P)| = 2

(right side) = -\frac{3}{2}|F_3| + \sum_{d \geq 5} \frac{d}{2}|F_d|
= -\frac{3}{2} \times 2 + \frac{5}{2} \times 2 = 2
(calculation)

(left side) = |\Delta(P)| = 6

(right side) = \(-\frac{3}{2}|F_3| + \sum_{d \geq 5} \frac{d}{2}|F_d|\)

= \(-\frac{3}{2} \times 3 + \frac{5}{2} \times 3 + \frac{6}{2} \times 1\) = 6
Wada-Yamashita-Yoshida

In the proof of Theorem 1, (after smart reductions to the finite number of cases), they wrote:

“Next consider the case where $r < 9$. Running a computer program shows that there are twelve sequences ...”

However, no actual codes could be shown...
Remarks

Wada-Yamashita-Yoshida

In the proof of Theorem 1, (after smart reductions to the finite number of cases), they wrote:

“Next consider the case where $r < 9$. Running a computer program shows that there are twelve sequences ...”

However, no actual codes could be shown...

Our contribution

An alternative proof of Thm 2 without computer-asistance.
Outline of Proof

Theorem 2 (1)

\[|\Delta(P)| \geq -\frac{3}{2}|F_3(P)| + \sum_{d \geq 5} \frac{d}{2}|F_d(P)| \]

We show it by induction about the number of faces \(|F(P)|\).
Refer the right-hand side as \(\delta(P)\);

\[\delta(P) = -\frac{3}{2}|F_3(P)| + \sum_{d \geq 5} \frac{d}{2}|F_d(P)| \]

(i) \(|F(P)| = 4 \) (the minimal number of faces for polyhedra)
\(|\Delta(P)| = 0 \quad \delta(P) = -6 \)
Lemma

If $|\Delta(P)| = 0$, then $3|F_3(P)| > \sum_{d \geq 5} d|F_d(P)|$ holds.

We show Lemma by contraposition.

Suppose that $3|F_3(P)| \leq \sum_{d \geq 5} d|F_d(P)|$
Lemma

If $|\Delta(P)| = 0$, then $3|F_3(P)| > \sum_{d \geq 5} d|F_d(P)|$ holds.

We show Lemma by contraposition.

Suppose that $3|F_3(P)| \leq \sum_{d \geq 5} d|F_d(P)|$

Then, there exists an edge such as;

$\Rightarrow |\Delta(P)| \neq 0$
Now suppose $|\Delta| \geq \delta$ holds for any polyhedron with $|F| \leq k - 1$ for $k \geq 5$, and consider a polyhedron P with $|F(P)| = k$.
Now suppose $|\Delta| \geq \delta$ holds for any polyhedron with $|F| \leq k - 1$ for $k \geq 5$, and consider a polyhedron P with $|F(P)| = k$.

Key operation: collapsing a face
The number of diagonals toward to each vertex of d-gon is $d(d - 3)$ at least.
(setting)
(the number of quadrangle adjacent to collapsed face):=\(d_4\)
(the number of pentagon adjacent to collapsed face):=\(d_5\)
(the number of d-gon adjacent to collapsed face):=\(d_6\) \((d \geq 6)\)

(change by collapsing a face: \(P \leadsto P'\))
\[
|\Delta(P)| - d(d - 3) - d_5(d - 2) - 2d_6(d - 2) \geq |\Delta(P')|
\]
\[
|F_3(P)| + d_4 = |F_3(P')|
\]
\[
\sum_{d \geq 5} d|F_d(P)| - d - 5d_5 - d_6 = \sum_{d \geq 5} d|F_d(P')|
\]
(calculation)

\[|\Delta(P)| \geq |\Delta(P')| + d(d - 3) + d_5(d - 2) + 2d_6(d - 2) \]

\[= -\frac{3}{2}|F_3(P')| + \frac{1}{2} \sum d|F_d(P')| + d(d - 3) \]

\[+ d_5(d - 2) + 2d_6(d - 2) \]

\[= -\frac{3}{2}|F_3(P)| - \frac{3}{2}d_4 + \frac{1}{2} \sum d|F_d(P)| - \frac{d}{2} - \frac{5}{2}d_5 - \frac{d_6}{2} \]

\[+ d_5(d - 2) + 2d_6(d - 2) \]

\[\geq \delta(P) + d^2 - \frac{7}{2}d - \frac{3}{2}d_4 - \frac{5}{2}d_5 + 3d_5 - \frac{d_6}{2} + 6d_6 \]

\[= \delta(P) + d(d - \frac{7}{2}) - \frac{3}{2}d_4 + \frac{1}{2}d_5 + \frac{11}{2}d_6 \]

\[\geq \delta(P) + d(d - 5) + \frac{1}{2}d_5 + \frac{11}{2}d_6 \]
Some other cases

If there are triangles adjacent to a face, we can’t collapse the face. Then, we need some more operations.

Operation 1
Operation 2
Proof for the equality

$$|\Delta(P)| \geq -\frac{3}{2}|F_3(P)| + \sum_{d \geq 5} \frac{d}{2}|F_d(P)|$$

$$\Rightarrow$$ one of the polyhedra shown in Figure 1

(Proof)

We conform the change by collapsing a face;

$$|\Delta(P)| - \delta(P) \geq |\Delta(P')| - \delta(P') + \boxed{\text{.}}$$

Then

$$|\Delta(P')| - \delta(P') \geq 0$$

by the argument before, and so;

$$|\Delta(P)| - \delta(P) = 0 \Rightarrow \boxed{\text{.}} \leq 0.$$

We calculate in the case that we can collapse a face and a collapse face is triangle.

$$\boxed{\text{.}} = 1 - d_4 - d_5 + d_6 + \frac{2}{3}d_0$$
Case by case arguments..

(1) \(1 - d_4 - d_5 + d_6 + \frac{2}{3} d_0 = 0\)
 (i) \(d_4 = d_5 = d_6 = 1, d_0 = 0\)
 (ii) \(d_4 = 2, d_6 = 1, d_0 = 0\)
 (iii) \(d_5 = 2, d_6 = 1, d_0 = 0 \Rightarrow \text{(Figure 1 right)}\)

(2) \(1 - d_4 - d_5 + d_6 + \frac{2}{3} d_0 < 0\)
 (i) \(d_4 = 3, d_0 = 0\)
 \(d_0 = 2\)
 (ii) \(d_4 = 2, d_5 = 1, d_0 = 0\)
 \(d_0 = 2\)
 (iii) \(d_4 = 1, d_5 = 2, d_0 = 0 \Rightarrow \text{(Figure 1 left)}\)
 \(d_0 = 2\)
 (iv) \(d_5 = 3, d_0 = 0\)
 \(d_0 = 2\)
Thank you for your attention!