Pairs of boundary slopes with small differences

市 原 一 裕

日本大学 文理学部

東北結び目セミナー 2013

東北大学片平キャンパス，2013年10月25日
Introduction

Boundary slope

Examples

Known facts

Culler-Shalen
Alternating knot
Montesinos knot

Result

H-O Machinery

Proof

Surface 1
Surface 2
Essential surface

\[K : \text{a knot in } S^3 \]

\[E(K) : \text{the exterior of } K, \]
i.e., \(E(K) = S^3 - \text{open tubular nbd. of } K \)
Essential surface

K: a knot in S^3

$E(K)$: the **exterior** of K, i.e., $E(K) = S^3$ – open tubular nbd. of K

Essential surface

An embedded surface F in $E(K)$ is called **essential** if F is incompressible and ∂-incompressible.

Remark:
Surfaces are not assumed to be orientable.
Boundary slope

Slope

A slope on $\partial E(K)$ means the isotopy class of non-trivial simple closed curves on $\partial E(K)$.

Pairs of boundary slopes with small differences

K.Ichihiara

Introduction

Boundary slope

Examples

Known facts

Culler-Shalen

Alternating knot

Montesinos knot

Result

H-O Machinery

Proof

Surface 1

Surface 2
Boundary slope

Slope

A slope on $\partial E(K)$ means the isotopy class of non-trivial simple closed curves on $\partial E(K)$.

Fix standard meridian-longitude system for K.

Then $\{ \text{slope on } \partial E(K) \} \leftrightarrow 1:1 \ \mathbb{Q} \cup \{ \frac{1}{0} \}$
Boundary slope

A slope on $\partial E(K)$ means the isotopy class of non-trivial simple closed curves on $\partial E(K)$.

Fix standard meridian-longitude system for K.

Then \[\{ \text{slope on } \partial E(K) \} \xleftrightarrow{1:1} \mathbb{Q} \cup \{ \frac{1}{0} \} \]

Let F be an essential surface in $E(K)$.

The boundary slope of F is defined as the slope determined by boundary components of F.
Examples

Example 1. (figure-eight knot) [Thurston]

```
+4
```

```
−4
```

boundary slopes are $−4, 0, 4$

“0” indicates the boundary slope of Seifert surfaces.

- (Hatcher-Thurston) For 2-bridge knots, there exists an algorithm to determine all boundary slopes.
Examples

Example 2.

\[K = 8_{20} \]: non-alternating knot

boundary slopes are \(-10, 0, \frac{8}{3}\).
Examples

Example 2.

\[K = 8_{20} : \text{non-alternating knot} \]

boundary slopes are \(-10, 0, \frac{8}{3}\).

Example 3. [Tsau]

For a Torus knot \(T_{p,q} \), boundary slopes are \(0, pq \).

“0” : the boundary slope of a Seifert surface

“pq” : the boundary slope of an essential annulus
Pairs of boundary slopes with small differences

K. Ichihara

Introduction
Boundary slope
Examples

Known facts
Culler-Shalen
Alternating knot
Montesinos knot

Result

H-O Machinery

Proof
Surface 1
Surface 2
Culler-Shalen’s results

Culler-Shalen (1984)

Every non-trivial knot has **at least two** boundary slopes.
Culler-Shalen’s results

Culler-Shalen (1984)

Every non-trivial knot has **at least two** boundary slopes.

Culler-Shalen (1999)

Any non-trivial knot in S^3 not having the meridional boundary slope admits a pair of boundary slopes whose difference is at least 2.

Remark

“difference” means the difference **as rational numbers**.
Any alternating knot admits a pair of boundary slopes whose difference is at least twice of its crossing number.

Also the difference is bounded from below in terms of minimal genera of bounding surfaces.

The boundary slopes are given by the pair of checker-board surfaces for a reduce alternating diagram.
Any alternating knot admits a pair of boundary slopes whose difference is at least twice of its crossing number.

Also the difference is bounded from below in terms of minimal genera of bounding surfaces.

The boundary slopes are given by the pair of checker-board surfaces for a reduce alternating diagram.

Similar bounds for Montesinos knots were obtained, and reported in past 東北結び目セミナー.
Montesinos knot

\[M\left(\frac{p_1}{q_1}, \frac{p_2}{q_2}, \ldots, \frac{p_n}{q_n} \right) \]

Assume that:

- the number of tangles \(n \) is at least 3,
- all fractions are non-integral.
Montesinos knot

Theorem [I.-Mizushima, 2009]

Let K be a non-trivial Montesinos knots, and $Cr(K)$ its minimal crossing number. Then K has a pair of boundary slopes whose difference is at least $Cr(K) - 6$.

(東北結び目セミナー -2006 in Late Autumn-)
Introduction
 Boundary slope
 Examples

Known facts
 Culler-Shalen
 Alternating knot
 Montesinos knot

Result

H-O Machinery

Proof
 Surface 1
 Surface 2
Main Theorem

Theorem (I., preprint)

For any positive number ε, there exists a knot in S^3 admitting a pair of boundary slopes whose difference is at most ε.

K. Ichihara
Pairs of boundary slopes with small differences
arXiv:1307.0107
Main Theorem

Theorem (I., preprint)

The Montesinos knot \(K_n = M(-1/2, 2/5, 1/n) \) with an odd positive integer \(n \geq 11 \) admits a pair of boundary slopes \(2(n - 1)^2/n \) and \(2(n^2 - 9n + 15)/(n - 7) \).

Note:

\[
\frac{2(n^2 - 9n + 15)}{n - 7} - \frac{2(n - 1)^2}{n} = 2 \left(\frac{1}{n} + \frac{1}{n - 7} \right) \to 0
\]

as \(n \to \infty \).
Introduction
Boundary slope
Examples

Known facts
Culler-Shalen
Alternating knot
Montesinos knot

Result

H-O Machinery

Proof
Surface 1
Surface 2
Algorithm by Hatcher and Oertel

: finds and enumerates all boundary slopes for a given Montesinos knot.

: is based on Algorithm by Hatcher and Thurston for two-bridge knots.

: seems to be algebraic or combinatorial.

(i) produces candidate surfaces.

(ii) verifies incompressibility of surfaces.

Ref.

A. Hatcher and U. Oertel,
Boundary slopes for Montesinos knots,
Dunfield’s software

- implements Algorithm of Hatcher and Oertel.
- is available from
 http://www.math.uiuc.edu/~nmd//montesinos/index.html
- is written in Python language.

Computer experiments have been very helpful !!
Edge path system

In algorithm,

\[
\text{essential surface} \uparrow
\]

system of sequences of irreducible fractions
(we call an edge path system)

Example. A Seifert surface for \(K(-1/2, 1/3, 1/7) \)

\[
\begin{align*}
\langle \infty \rangle & - \langle \frac{0}{1} \rangle - \langle -\frac{1}{2} \rangle \\
\langle \infty \rangle & - \langle \frac{1}{1} \rangle - \langle \frac{1}{2} \rangle - \langle \frac{1}{3} \rangle \\
\langle \infty \rangle & - \langle 1 \rangle - \langle \frac{1}{2} \rangle - \langle \frac{1}{3} \rangle - \langle \frac{1}{4} \rangle - \langle \frac{1}{5} \rangle - \langle \frac{1}{6} \rangle - \langle \frac{1}{7} \rangle
\end{align*}
\]
Surface \Rightarrow edge path system

Decompose S^3 into balls B_1, \cdots, B_n. $B_i \supset T_i$
Subsurfaces

An essential surface F can be isotoped to be in a **standard position** in each B_i:

- (a) base disks
- (b) saddle
- (c) compound
- (d) cap
In $B_i \supset S^2 \times [0, 1]$, the intersection curves of F and level spheres give an edge path system.
Pairs of boundary slopes with small differences

K. Ichihara

Introduction
Boundary slope
Examples
Known facts
Culler-Shalen
Alternating knot
Montesinos knot
Result
H-O Machinery
Proof
Surface 1
Surface 2

Edge path system & saddle surface

\[\langle \frac{p}{q} \rangle - \langle \frac{r}{s} \rangle \iff |p \cdot s - q \cdot r| = 1 \]
Introduction
Boundary slope
Examples

Known facts
Culler-Shalen
Alternating knot
Montesinos knot

Result

H-O Machinery

Proof
Surface 1
Surface 2
Pairs of boundary slopes with small differences

K. Ichihara

Introduction

Boundary slope

Examples

Known facts

Culler-Shalen

Alternating knot

Montesinos knot

Result

H-O Machinery

Proof

Surface 1

Surface 2

Edgepath system 1

\[\Gamma = (\gamma_1, \gamma_2, \gamma_3) \]

\[\gamma_1 : \left(\frac{1}{n} \langle -1 \rangle + \frac{n - 1}{n} \langle -\frac{1}{2} \rangle \right) - \langle -\frac{1}{2} \rangle \]

\[\gamma_2 : \left(\frac{1}{n} \langle 0 \rangle + \frac{n - 1}{n} \frac{1}{2} \langle \frac{1}{2} \rangle \right) - \frac{1}{2} - \frac{2}{5} \]

\[\gamma_3 : \left(\frac{n - 1}{n} \langle 0 \rangle + \frac{1}{n} \langle \frac{1}{n} \rangle \right) - \frac{1}{n} \]

Note:

A point like \(\frac{p}{q} \) corresponds to (c) compound
Pairs of boundary slopes with small differences

K. Ichihara

Introduction

Boundary slope

Examples

Known facts

Culler-Shalen

Alternating knot

Montesinos knot

Result

H-O Machinery

Proof

Surface 1

Surface 2

Edgepath system 2

\[\Gamma' = (\gamma'_1, \gamma'_2, \gamma'_3) \]

\[\gamma'_1 : \frac{n - 7}{n - 4} \langle -\frac{1}{2} \rangle + \frac{3}{n - 4} \langle -\frac{1}{2} \rangle^\circ \]

\[\gamma'_2 : \left(\frac{n - 9}{n - 7} \langle \frac{1}{2} \rangle + \frac{2}{n - 7} \langle \frac{2}{5} \rangle \right) - \langle \frac{2}{5} \rangle \]

\[\gamma'_3 : \left(\frac{n - 8}{n - 7} \langle 0 \rangle + \frac{1}{n - 7} \langle \frac{1}{n} \rangle \right) - \langle \frac{1}{n} \rangle \]

Note:

A point like \(k \langle p/q \rangle + l \langle p/q \rangle^\circ \) corresponds to \((d) \) cap.