Exceptional surgeries on alternating knots

Kazuhiro Ichihara

Nihon University
College of Humanities and Sciences

joint work with

Hidetoshi Masai (Tokyo Institute of Technology)

Topology and Computer 2013
Meiji University, Nakano Campus, Dec 1, 2013
K. Ichihara and H. Masai,
Exceptional surgeries on alternating knots,

Related files and outcomes are downloadable at:
http://www.math.chs.nihon-u.ac.jp/~ichihara/ExcAlt/
Table of contents

1 Introduction
 3-manifold
 Dehn surgery
 Exceptional surgery

2 Results

3 Outline of Proof
 $t(d) \geq 9$
 arborescent knots
 Remaining cases

4 Using Computer
 Main program
 TSUBAME

5 Procedure of Computation (rough sketch)
 FEF.py

6 Appendix
3-dimensional manifold (3-manifold)

A space locally modelled on \mathbb{R}^3 (like our UNIVERSE)

Curved Spaces by J. Weeks

http://geometrygames.org/CurvedSpaces/index.html
Classification of 3-manifolds

Classification Theorem

Every closed orientable 3-manifold is;

- **Reducible** (containing essential sphere)
- **Toral** (containing essential torus)
- **Seifert fibered** (admitting a foliation by circles)
- **Hyperbolic** (admitting Riem. metric of const. curv. -1)

as a consequence of the Geometrization Conjecture including famous Poincaré Conjecture (1904) conjectured by Thurston (late '70s) established by Perelman (2002-03)
• Attack the remaining Open Problems.
 (e.g., “Heegaard genus VS rank of π_1” problem, . . .)

• Relate Geometric & Topological invariants
 (e.g., Volume conjecture . . .)

• Study the Relationships between 3-mfds.
 (e.g., Dehn surgery . . .)
 (⇑ Today!)
Dehn surgery on a knot

An operation to connect a pair of 3-manifolds

\[K : \text{a knot in a 3-manifold } M \]

Dehn surgery on \(K \)

1) remove the interior of a regular nbd \(N(K) \) of \(K \) from \(M \) (to obtain the exterior of \(K \))

2) glue a solid torus back (along a slope \(\gamma \))

3-mf; \(M \) \[\xrightarrow{\text{Dehn surgery}} \] \((K, \gamma) \) \[\xrightarrow{\text{Solid torus}} \]
K : a knot in the 3-sphere S^3

Notation

For $f : \partial V \to \partial E(K)$ and the meridian m of V, the slope (i.e., isotopy class) γ of the loop $f(m)$ on $\partial E(K)$ is called the **surgery slope**.

Such a slope on $\partial E(K)$ can be regarded as $r \in \mathbb{Q} \cup \{1/0\}$.

Notation

$K(r)$: the manifold obtained by surgery on K along r.

Exceptional surgeries on alternating knots

K. Ichihara

Introduction

3-manifold
Dehn surgery
Exceptional surgery

Results

Outline of Proof
$t(d) \geq 9$
arborescent knots
Remaining cases

Using Computer

Main program
TSUBAME

Procedure of Computation
(rough sketch)
FEF.py

Appendix
Motivation

Hyperbolic Dehn Surgery Theorem [Thurston (1978)]

Only finitely many Dehn surgeries on a hyperbolic knot (i.e., knot with hyperbolic complement) yield non-hyperbolic manifolds.

Exceptional surgery

A Dehn surgery on a hyperbolic knot is called exceptional if it yields a non-hyperbolic manifold.

Ultimate Goal

Classify all the exceptional surgeries on hyperbolic knots in the 3-sphere S^3.
Table of contents

1 Introduction
 3-manifold
 Dehn surgery
 Exceptional surgery

2 Results

3 Outline of Proof
 $t(d) \geq 9$
 arborescent knots
 Remaining cases

4 Using Computer
 Main program
 TSUBAME

5 Procedure of Computation (rough sketch)
 FEF.py

6 Appendix

Let K be a hyperbolic alternating knot in S^3. If K admits a non-trivial exceptional surgery, then K is equivalent to an arborescent knot.

Facts

Complete classifications of exceptional surgeries have been known for

- 2-bridge knots [Brittenham-Wu, 2001]

Let \(K \) be a hyperbolic alternating knot in \(S^3 \). Suppose that \(K(r) \) is non-hyperbolic for a rational number \(r \). Then \(K(r) \) is irreducible, and the following hold. If \(K(r) \) is toroidal, then \(K(r) \) is not a Seifert fibered, and \(K \) is equivalent to either

- the figure-eight knot and \(r = 0, \pm 4 \),
- a two bridge knot \(K_{[b_1,b_2]} \) with \(|b_1|, |b_2| > 2 \), and \(r = 0 \) if both \(b_1, b_2 \) are even, \(r = 2b_2 \) if \(b_1 \) is odd and \(b_2 \) is even,
- a twist knot \(K_{[2n,\pm 2]} \) with \(|n| > 1 \) and \(r = 0, \mp 4 \),
- a pretzel knot \(P(q_1,q_2,q_3) \) with \(q_i \neq 0, \pm 1 \) for \(i = 1, 2, 3 \), and \(r = 0 \) if \(q_1, q_2, q_3 \) are all odd, \(r = 2(q_2 + q_3) \) if \(q_1 \) is even and \(q_2, q_3 \) are odd.

In the above, when \(r \neq 0 \), then \(r \) is always a boundary slope of a once punctured Klein bottle spanned by \(K \).

If $K(r)$ is small Seifert fibered, then $K(r)$ has the infinite fundamental group, and K is equivalent to either

- the figure-eight knot and $r = \pm 1, \pm 2, \pm 3$,
- a twist knot $K[2n,\pm 2]$ with $|n| > 1$ and $r = \mp 1, \pm 2, \pm 3$.

In particular, the figure-eight knot is the only knot admitting 10 exceptional surgeries among hyperbolic alternating knots, and the others admit at most 5 exceptional surgeries.
Table of contents

1 Introduction
 3-manifold
 Dehn surgery
 Exceptional surgery

2 Results

3 Outline of Proof
 \[t(d) \geq 9 \]
 arborescent knots
 Remaining cases

4 Using Computer
 Main program
 TSUBAME

5 Procedure of Computation (rough sketch)
 FEF.py

6 Appendix
Let K be a hyperbolic alternating knot in S^3.

Fact [Lackenby (2000)]

If K has a prime alternating diagram D satisfying $t(D) \geq 9$, then K admits no exceptional surgeries.

Here $t(D)$ denotes the number of twists.

A twist is defined as either;

- a maximal connected collection of bigon regions in D
- or an isolated crossing adjacent to no bigon regions.
• All alternating knots with $t(D) \leq 5$ are arborescent.
• Most alternating knots with $t(D) \leq 8$ are arborescent.

A knot K is called an **arborescent** knot if it can be obtained by summing and gluing several rational tangles together.

Fact (Brittenham-Wu, Wu, I.-Jong, Meier)

All the exceptional surgeries on hyperbolic alternating arborescent knots are completely classified.
Lemma

Suppose that a hyperbolic alternating knot K in S^3 has a connected prime alternating diagram D satisfying $t(D) \leq 8$.

Moreover suppose that K is not an arborescent knot.

Then the diagram D satisfies $6 \leq t(D) \leq 8$
and is obtained from one of the 9 plane graphs
by substituting one of the 4 tangles in the next Figure
to each of the fat vertices in the graphs,
and performing twistings on all the augmented circles.
Exceptional surgeries on alternating knots

K. Ichihara

Introduction
3-manifold
Dehn surgery
Exceptional surgery

Results

Outline of Proof

Using Computer
Main program TSUBAME

Procedure of Computation (rough sketch)

Remaining cases

Appendix
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
Thus, for example, K can be obtained by twisting along augmented loops from the following links...
It suffice to get a complete classification of exceptional surgeries on the links like those as illustrated.

The number of such links are at most

\[4^6 + 4^7 + 7 \times 4^8 = 479232\]

By using symmetry, and other restrictions, we reduce the number into 30404.

We listed up the links by using computer.

Target: Exceptional surgeries on these 30404 links.
Table of contents

1 Introduction
 3-manifold
 Dehn surgery
 Exceptional surgery

2 Results

3 Outline of Proof
 \(t(d) \geq 9 \)
 arborescent knots
 Remaining cases

4 Using Computer
 Main program
 TSUBAME

5 Procedure of Computation (rough sketch)
 FEF.py

6 Appendix
To study exceptional surgeries on the links, we further used a computer program developed in:

B. Martelli, C. Petronio, F. Roukema

Exceptional Dehn surgery on the minimally twisted five-chain link

preprint, arXiv:1109.0903

The program relies upon

- **SnapPy** (based on **SnapPea**): computer software calculates various hyperbolic invariants for 3-manifolds.
We modified the original codes to use interval arithmetics (explained in the previous talk) and applied the program \texttt{hikmot} developed in

N. Hoffman, K. Ichihara, M. Kashiwagi, H. Masai, S. Oishi, and A. Takayasu,
http://www.oishi.info.waseda.ac.jp/~takayasu/hikmot/

It can possibly give us a rigorous complete classification of exceptional surgeries on a given hyperbolic link.
Exceptional surgeries on alternating knots
K. Ichihara

Computation time

- We have **30404** links to investigate.
- For ONE link, in the worst case, we need around **9 HOURs** by PC.

⇒ We need to reduce the computation time.

Fact [Wu] + Observation

Suppose
- the edges go through a crossing circle are anti-parallel
- after "smoothing", #(knot components) > 1.

Then the links obtained by twisting more than once along augmented loops have NO exceptional surgeries.

⇒ We can reduce the totally computation time to about 1/100.

Still we need more than **2000** hours by PC... (about 81 days)
• TSUBAME is the supercomputer of Tokyo Tech.
• Intuitively we can use many machines simultaneously.
• I ”rent” 320 machines.
Table of contents

1 Introduction
 3-manifold
 Dehn surgery
 Exceptional surgery

2 Results

3 Outline of Proof
 \[t(d) \geq 9 \]
 arborescent knots
 Remaining cases

4 Using Computer
 Main program
 TSUBAME

5 Procedure of Computation (rough sketch)
 FEF.py

6 Appendix
Exceptional surgeries on alternating knots

K. Ichihara

Introduction

3-manifold Dehn surgery Exceptional surgery

Results

Outline of Proof

Main program TSUBAME

Procedure of Computation (rough sketch) FEF.py

Appendix

Main procedure

feito: (based on find_exceptional_filling.py)

Input: A triangulation data T of a manifold N
Output: A verification that all non-trivial Dehn surgeries of N satisfying some conditions are hyperbolic.

Given a triangulation of a 3-manifold, find a hyperbolic structure via hikmot, list the slopes of length < 6.0001 up, and perform surgeries along the slopes. Do this procedure recursively.

Recall that:

The 6-theorem [Agol, Lackenby (2000)]
A Dehn surgery along a slope of length > 6 is not exceptional.
Input: an ideal **triangulation** of a cusped 3-manifold

(1)

Try to find a nicely approximated hyperbolic structure, and try to certify it via hikmot.

Can such a solution be found? Does the obtained triangulation contain flat or nearly flat tetrahedra?

[Y. → (3)] [N. → (2)]
Introduction
3-manifold
Dehn surgery
Exceptional surgery

Results
Outline of Proof
\(t(d) \geq 9 \)
arborescent knots
Remaining cases

Using Computer
Main program
TSUBAME

Procedure of Computation (rough sketch)
FEF.py

Appendix

Exceptional surgeries on alternating knots

K. Ichihara

Procedure

(2) Randomize the triangulation.

[\rightarrow (1)]

(3) Find and fix a nearly maximal cusp by horoball expansions.
List up the slopes of length \(< 6.0001\) on the cusp.
Do such slopes exist?

[Y. \rightarrow (4)] [N. \rightarrow (end)]
Exceptional surgeries on alternating knots

K. Ichihara

Introduction
3-manifold
Dehn surgery
Exceptional surgery

Results

Outline of Proof

\(t(d) \geq 9 \)
arborescent knots

Remaining cases

Using Computer

Main program
TSUBAME

Procedure of Computation
(rough sketch)

FEF.py

Appendix

Procedure

(4)

Perform a Dehn filling along a slope in the list.

Find a nicely approximated hyperbolic structure, and certify it via hikmot.

Can such a solution be found?

\[
\text{Y. } \rightarrow \text{(6)} \quad \text{[N. } \rightarrow \text{(5)} \text{]}
\]

(5)

Randomize the triangulation.

\[
\rightarrow \text{(4)}
\]
Exceptional surgeries on alternating knots

K. Ichihara

Introduction

3-manifold
Dehn surgery
Exceptional surgery

Results

Outline of Proof

\[t(d) \geq 9 \]
arborescent knots

Remaining cases

Using Computer

Main program TSUBAME

Procedure of Computation (rough sketch)

FEF.py

Appendix

(6)

Recursively apply this procedure for the obtained cusped hyperbolic 3-manifolds.

We have applied our main code \texttt{fef.py}.

Actually, applying this procedure, we treated 5868836 hyperbolic 3-manifolds...

Finally we can conclude there are no exceptional surgeries on hyperbolic non-arborescent alternating knots with a prime alternating diagram \(D \) satisfying \(t(D) \leq 8 \).
Table of contents

1 Introduction
 3-manifold
 Dehn surgery
 Exceptional surgery

2 Results

3 Outline of Proof
 \(t(d) \geq 9 \)
 arborescent knots
 Remaining cases

4 Using Computer
 Main program
 TSUBAME

5 Procedure of Computation (rough sketch)
 FEF.py

6 Appendix

The Montesinos knots $M(-1/2, 2/5, 1/(2q + 1))$ with $q \geq 5$ have no non-trivial exceptional surgeries.

Together with known results, this gives the final step in a complete classification of exceptional surgery on arborescent knots as follows.

Let K be a hyperbolic arborescent knot in S^3. Suppose that $K(r)$ is non-hyperbolic for $r \in \mathbb{Q}$.

Then r must be an integer except for $r = 37/2$ for $P(-2, 3, 7)$.

The manifold $K(r)$ is always irreducible, and

$\pi_1(K(r))$ is infinite except for

$r = 17, 18, 19$ for $P(-2, 3, 7)$ and $r = 22, 23$ for $P(-2, 3, 9)$.

If \(K(r) \) is toroidal, then \(K(r) \) is not a Seifert fibered, and \(K \) is equivalent to

- a two bridge knot \(K_{[b_1,b_2]} \) with \(|b_1|, |b_2| > 2 \), and \(r = 0 \) if both \(b_1, b_2 \) are even, \(r = 2b_2 \) if \(b_1 \) is odd and \(b_2 \) is even,
- a twist knot \(K_{[2n,\pm2]} \) with \(|n| > 1 \) and \(r = 0, \mp 4 \),
- one of the Montesinos knots of length 3 with the slope described in Table 1.

- \(K_1 \) with \(r = 3 \), \(K_2 \) with \(r = 0 \) or \(K_3 \) with \(r = -3 \) for
 \[
 (S^3, K_1) = T(1/3, -1/2; 4) \cup \eta T(1/3, -1/2; 4),
 (S^3, K_2) = T(1/3, -1/2; 4) \cup \eta T(-1/3, 1/2; -4), \text{ and}
 (S^3, K_3) = T(-1/3, 1/2; -4) \cup \eta T(-1/3, 1/2; -4).\]
Table: Toroidal surgeries

<table>
<thead>
<tr>
<th>K</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(q_1, q_2, q_3), q_i \text{ odd and }</td>
<td>q_i</td>
</tr>
<tr>
<td>$P(q_1, q_2, q_3), q_1 \text{ even, } q_2, q_3 \text{ odd and }</td>
<td>q_i</td>
</tr>
<tr>
<td>$P(-2, 3, 7)$</td>
<td>37/2</td>
</tr>
<tr>
<td>$P(-3, 3, 7)$</td>
<td>1</td>
</tr>
<tr>
<td>$M(-1/2, 1/3, 1/(3 + 1/n)), n \text{ even and } n \neq 0$</td>
<td>$2 - 2n$</td>
</tr>
<tr>
<td>$M(-1/2, 1/3, 1/(5 + 1/n)), n \text{ even and } n \neq 0$</td>
<td>$1 - 2n$</td>
</tr>
<tr>
<td>$M(-1/2, 1/3, 1/(6 + 1/n)), n \neq 0, -1 \text{ odd (resp. even)}$</td>
<td>16 (resp. 0)</td>
</tr>
<tr>
<td>$M(-1/2, 1/5, 1/(3 + 1/n)), n \text{ even and } n \neq 0$</td>
<td>$5 - 2n$</td>
</tr>
<tr>
<td>$M(-1/2, 2/5, 1/7)$</td>
<td>12</td>
</tr>
<tr>
<td>$M(-1/2, 2/5, 1/9)$</td>
<td>15</td>
</tr>
<tr>
<td>$M(-1/3, -1/(3 + 1/n), 2/3), n \neq 0, -1 \text{ odd (resp. even)}$</td>
<td>-12 (resp. 4)</td>
</tr>
<tr>
<td>$M(-2/3, 1/3, 1/4)$</td>
<td>13</td>
</tr>
<tr>
<td>$M(-1/(2 + 1/n), 1/3, 1/3), n \text{ odd and } n \neq -1$</td>
<td>$2n$</td>
</tr>
</tbody>
</table>

If $K(r)$ is small Seifert fibered, then K is either

- the figure-eight knot and $r = \pm 1, \pm 2, \pm 3$,
- a twist knot $K_{[2n,\pm]}$ with $|n| > 1$ and $r = \mp 1, \mp 2, \mp 3$,
- one of the Montesinos knots of length 3 with the slope described in Table 2.
Table: Seifert fibered surgeries

<table>
<thead>
<tr>
<th>K</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(-2, 3, 2n + 1), n \neq 0, 1, 2$</td>
<td>$4n + 6, 4n + 7$</td>
</tr>
<tr>
<td>$P(-2, 3, 7)$</td>
<td>17</td>
</tr>
<tr>
<td>$P(-3, 3, 3)$</td>
<td>1</td>
</tr>
<tr>
<td>$P(-3, 3, 4)$</td>
<td>1</td>
</tr>
<tr>
<td>$P(-3, 3, 5)$</td>
<td>1</td>
</tr>
<tr>
<td>$P(-3, 3, 6)$</td>
<td>1</td>
</tr>
<tr>
<td>$M(-1/2, 1/3, 2/5)$</td>
<td>$3, 4, 5$</td>
</tr>
<tr>
<td>$M(-1/2, 1/3, 2/7)$</td>
<td>$-1, 0, 1$</td>
</tr>
<tr>
<td>$M(-1/2, 1/3, 2/9)$</td>
<td>$2, 3, 4$</td>
</tr>
<tr>
<td>$M(-1/2, 1/3, 2/11)$</td>
<td>$-1, -2$</td>
</tr>
<tr>
<td>$M(-1/2, 1/5, 2/5)$</td>
<td>7, 8</td>
</tr>
<tr>
<td>$M(-1/2, 1/7, 2/5)$</td>
<td>11</td>
</tr>
<tr>
<td>$M(-2/3, 1/3, 2/5)$</td>
<td>-5</td>
</tr>
</tbody>
</table>
Thank you for your attention!

ありがとうございました。

Grazie mille!