Strong cylindricality and the monodromy of bundles

Kazuhiro Ichihara

Nihon University
College of Humanities and Sciences

joint work with

Tsuyoshi Kobayashi (Nara Women’s University)
Yo’av Rieck (University of Arkansas)

2014 Mathematical Society of Japan ANNUAL MEETING
Gakushuin University, March 15, 2014
Essential surfaces

have played a very important role in the study of 3-manifolds.

Definition

\[F : \text{connected closed surface, not homeomorphic to } S^2, \text{ embedded in a 3-manifold } M \]

\[F : \text{essential } \iff F \text{ is incompressible & not-}\partial\text{-parallel} \]
Essential surfaces

have played a very important role in the study of 3-manifolds.

Definition

\(F \) : connected closed surface, not homeomorphic to \(S^2 \), embedded in a 3-manifold \(M \)

\(F : \text{essential} \iff F \) is incompressible & not-\(\partial \)-parallel

Essential surfaces always exist in \(M \) if \(\beta_1(M) \geq 1 \), and are actually **infinitely many** up to isotopy if \(\beta_1(M) \geq 2 \).
Essential surfaces

have played a very important role in the study of 3-manifolds.

Definition

\[F : \text{connected closed surface, not homeomorphic to } S^2, \text{ embedded in a 3-manifold } M \]

\[F : \text{essential} \iff F \text{ is incompressible \& not-}\partial\text{-parallel} \]

Essential surfaces always exist in \(M \) if \(\beta_1(M) \geq 1 \), and are actually **infinitely many** up to isotopy if \(\beta_1(M) \geq 2 \).

Finiteness result (Hass, ’95)

Any closed hyperbolic 3-manifold contains only **finitely many acylindrical** essential surfaces.

Remark: acylindrical = not cylindrical
Cylindrical surface

Definition

\[F : \text{cylindrical} \Leftrightarrow M - \text{int} N(F) \supset \text{essential annulus } \mathcal{A} \]
Cylindrical surface

Definition

\[F : \text{cylindrical} \iff M - \text{int} N(F) \supset \text{essential annulus} A \]

Fact (Hass, ’95)

In a closed hyperbolic 3-manifold, any essential surface of **sufficiently large genus** is cylindrical.
Cylindrical surface

Definition

\[F : \text{cylindrical} \iff M - \text{int}N(F) \supset \text{essential annulus} \, A \]

Fact (Hass, ’95)

In a closed hyperbolic 3-manifold, any essential surface of **sufficiently large genus** is cylindrical.

Fact (Eudave-Muñoz–Neumann-Coto, ’04)

In a 3-manifold with triangulation of \(t \) tetrahedra, any essential surface of genus \(g \geq t + 1 \) is cylindrical.
Strong cylindricality & Theorem

Definition

F is strongly cylindrical

$\Leftrightarrow F$ is cylindrical with $(A, \partial A) \subset (M, F)$, embedded.
Strong cylindricality & Theorem

Definition

\[F \text{ is strongly cylindrical} \iff F \text{ is cylindrical with } (A, \partial A) \subset (M, F), \text{ embedded.} \]

Fact (Schleimer, 03')

In a 3-manifold with triangulation of \(t \) tetrahedra, any essential surface of genus \(g \gg t \) is strongly cylindrical.

Thus, any connected hyperbolic 3-manifold contains only finitely many weakly acylindrical surfaces.

(weakly acylindrical = not strongly cylindrical)
Strong cylindricality & Theorem

Definition

F is **strongly cylindrical**

$\iff F$ is cylindrical with $(A, \partial A) \subset (M, F)$, embedded.

Fact (Schleimer, 03’)

In a 3-manifold with triangulation of t tetrahedra, any essential surface of genus $g \gg t$ is strongly cylindrical.

Thus, any connected hyperbolic 3-manifold contains only **finitely many weakly acylindrical** surfaces.

(weakly acylindrical $=$ not strongly cylindrical)

Theorem [I.-Kobayashi-Rieck]

M: connected 3-manifold with triangulation of t tetrahedra.

F: connected essential surface of genus g.

Then \(g \geq 38t \implies F \) is strongly cylindrical.
Surface bundle and Monodromy (Motivation)

\(M \): surface bundle over \(S^1 \) with fiber \(F \)

i.e., \(M \cong F \times [0, 1]/\varphi \) with \(\varphi : F \to F \), monodromy
Surface bundle and Monodromy (Motivation)

M: surface bundle over S^1 with fiber F

i.e., $M \cong F \times [0, 1]/\varphi$ with $\varphi : F \to F$, monodromy

F is always cylindrical, but might be not strongly cylindrical.
Surface bundle and Monodromy (Motivation)

\(M \): surface bundle over \(S^1 \) with fiber \(F \)
i.e., \(M \cong F \times [0, 1]/\varphi \) with \(\varphi : F \to F \), monodromy

\(F \) is always cylindrical, but might be not strongly cylindrical.

When \(F \) is strongly cylindrical, by isotoping the annulus \(A \), we can find an essential loop \(\gamma \) on \(F \) such that \(\gamma \cap \varphi(\gamma) = \emptyset \).
Surface bundle and Monodromy (Motivation)

\(M \): surface bundle over \(S^1 \) with fiber \(F \)
i.e., \(M \cong F \times [0,1] / \varphi \) with \(\varphi : F \to F \), monodromy

\(F \) is always cylindrical, but might be not strongly cylindrical.

When \(F \) is strongly cylindrical, by isotoping the annulus \(A \), we can find an essential loop \(\gamma \) on \(F \) such that \(\gamma \cap \varphi(\gamma) = \emptyset \).

\[\implies \text{The action of } \varphi \text{ on the curve complex of } F \]
has the translation distance at most 1.

Corollary [Schleimer, I.-Kobayashi-Rieck]

Suppose that a closed hyperbolic manifold \(M \) admits infinitely many fibrations over \(S^1 \) with connected fibers. Then all but finitely many fibrations on \(M \) have translation distance 1.