Non left-orderable surgeries and generalized Baumslag-Solitar relators

Kazuhiro Ichihara
Nihon University
College of Humanities and Sciences

Joint work with Yuki Temma (Nihon Univ.)

The 10th East Asian School of Knots and Related Topics
January 28, 2015
L-space Conjecture

L-space Conjecture [Boyer-Gordon-Watson, 2011]

M: an irreducible rational homology sphere

M is an L-space if and only if $\pi_1(M)$ is not LO

left-orderability

A non-trivial group G is called **left-orderable (LO)** if $\exists <$: a strict total order on G which is left invariant:

$g < h \quad \rightarrow \quad fg < fh \quad \text{for } \forall f, g, h \in G$

L-space

A rational homology sphere M is called an L-space if $\text{rk} \hat{HF}(M) = |H_1(M; \mathbb{Z})|$ holds for $\hat{HF}(M)$: Heegaard Floer homology.
Dehn surgery

Dehn surgery is one of the simple ways to construct \(L \)-spaces.

The following operation to obtain another 3-manifold from a given 3-manifold is called a **Dehn surgery**.

\(K \): a knot in a 3-manifold \(M \)

Dehn surgery on \(K \)

1. remove an open regular neighborhood of \(K \) from \(M \) (drilling)
2. glue a solid torus \(V \) back along a slope \(\frac{p}{q} \) (Dehn filling)
Left-orderable surgery and L-space surgery

K: a knot in 3-sphere S^3

$K(p/q)$: a 3-manifold obtained by Dehn surgery on K along the slope p/q

left-orderable surgery

A Dehn surgery on K is called a **non left-orderable surgery** if it yields a closed 3-manifold with $\pi_1(K(p/q))$ is non left-orderable.

L-space surgery

A Dehn surgery on K is called an **L-space surgery** if it yields a closed 3-manifold which is an L-space.

Question

Which knots in S^3 have non-LO and/or L-space surgery?
Known results - Pretzel knots -

Theorem [Lidman-Moore, preprint (arXiv:1306.6707v1)]

For $s \geq 3$, only $(-2, 3, 2s + 1)$-pretzel knots have L-space surgeries among hyperbolic pretzel knots.

Hence, if L-space Conjecture is true, among hyperbolic pretzel knots, only $(-2, 3, 2s + 1)$-pretzel knots would have non-LO surgeries.
Known results - Pretzel knots -

Theorem [Nakae, Clay-Watson, 2013]
For $s \geq 3$, $(-2, 3, 2s + 1)$-pretzel knots have non left-orderable surgeries.

Corollary
If a $(-2, 3, 2s + 1)$-pretzel knot has an L-space surgery, then it has a non left-orderable surgery.

Remark: It is still open whether the opposite statement holds.
As an extension of Nakae’s result, we have:

Theorem [Ichihara-Temma, 2014]

Let K be a knot in a 3-manifold M. Suppose that $\pi_1(M - K)$ has a presentation such as

$$\langle a, b \mid (w_1a^mw_1^{-1})b^{-r}(w_2^{-1}a^nw_2)b^{r-k}\rangle$$

with $m, n \geq 0$, $r \in \mathbb{Z}$, $k \geq 0$, and a: a meridian of K. Suppose that the longitude of K is represented as $a^{-s}wa^{-t}$

with $s, t \in \mathbb{Z}$ and w is a word without a^{-1}, b^{-1}.

If $q \neq 0$ and $p/q \geq s + t$, then Dehn surgery on K along the slope p/q yields a closed 3-manifold with $\pi_1(K(p/q))$ is non left-orderable.
Remark:
The relator in the presentation in Theorem can be regarded as a generalization of the well-known Baumslag-Solitar relator.

The Baumslag-Solitar relator is the relator \(x^{-n} y x^m y^{-1} \) with \(m, n \neq 0 \) in the group generated by \(x, y \).

It plays an important role and is well-studied in combinatorial group theory and geometric group theory. For example;

Theorem [Shalen, 2001]
The Baumslag-Solitar relator cannot appear in the fundamental group of an orientable 3-manifold.
Known results - Twisted Torus knots -

Note:

\((-2, 3, 2s + 1)\)-pretzel knots = twisted torus knots \(K(3, 5; 2, s - 2)\).

Twisted torus knot \(K(3, -4; 2, 2)\)
Known results - Twisted Torus knots -

Theorem [Vafaee, 2014]

For $p \geq 2$, $k \geq 1$, $r > 0$ and $0 < s < p$,

$K(p, kp \pm 1; s, r)$ has an L-space surgery

if and only if either $s = p - 1$ or $s \in \{2, p - 2\}$ and $r = 1$.

Corollary

$K(3, q; 2, s)$ has an L-space surgery if $q > 0$ and $s \geq 1$.

Theorem [Clay-Watson, 2013]

$K(3, 3k + 2; 2, s)$ has a non left-orderable surgery

if (1) $k \geq 0$ and $s = 1$, or (2) $k = 1$ and $s \geq 0$.
Corollary [Ichihara-Temma, 2014]

For $k, s \geq 0$, $K(3, 3k + 2; 2, s)$ has a non left-orderable surgery.

Precisely $\pi_1(K(p/q))$ is non left-orderable if $p/q \geq 3(3k + 2) + 2s$.
Recent extensions

Our results have been extended as follows.

Theorem (Christianson-Goluboff-Hamann-Varadaraj)

For $p, k, s > 0$, $K(p, pk \pm 1; p - 1, s)$ and $K(p, pk \pm 1; p - 2, 1)$ have non left-orderable surgeries.

This is obtained in Columbia University math REU program by undergraduates.

Corollary

For $s > 0$, $K(3, q; 2, s)$ have non left-orderable surgeries.

Corollary

If $K(3, q; 2, s)$ has an L-space surgery, then it has a non left-orderable surgery.
Left-orderability

Set \(G := \pi_1(K(p/q)) \).

The following is well-known for experts:

Theorem

A countable group \(G \) is left-orderable if and only if \(G \) is isomorphic with a subgroup of \(Homeo^+(\mathbb{R}) \).

It suffice to study a homomorphism \(\varphi : G \to Homeo^+(\mathbb{R}) \).
Sample calculations

Abusing notations, we will denote the image of \(\varphi(g)(x) = gx \) for \(g \in G \).

\[
w_1 a^m w_1^{-1} b^{-r} w_2^{-1} a^n w_2 b^{r-k} = 1
\]

\[
\Rightarrow a^n w_2 b^{r-k} w_1 a^m = w_2 b^r w_1
\]

Assume: \(x < ax \) for any \(x \in \mathbb{R} \)

\[
a^n w_2 b^{r-k} w_1 a^m x = w_2 b^r w_1 x
\]
\[
< w_2 b^r w_1 a^m x
\]
\[
< a^n w_2 b^r w_1 a^m x
\]

\[
b^{r-k} x < b^r x \Rightarrow x < b^k x \Rightarrow x < bx \quad (\forall x \in \mathbb{R})
\]