Distances between boundary slopes of immersed essential surfaces

市原一裕 Kazuhiro Ichihara

大阪産業大学教養部 Osaka Sangyo Univ.
§1. Introduction

Let M be a cpt ori 3-mfd with $\partial M \cong T^2$.

Def. (immersed essential surface)

F is an immersed surface in M

\iff \exists compact surf S with $\partial S \neq \emptyset$

\exists proper immersion $f : S \hookrightarrow M$

s.t. $F = f(S)$, $f|_{\partial S}$ is an embedding.

F is essential

$\iff f$ is π_1-injective & ∂-π_1-injective.
Plenty of immersed ess surf’s slope $\overset{\text{def}}{\leftrightarrow}$ isotopy class of s.c.c. on ∂M.

∂-slope of immersed surf F $\overset{\text{def}}{\leftrightarrow}$ slope determined by ∂F.

Fact (Maher) For a two-bridge knot exterior, all slopes are ∂-slopes of immersed ess surf.

Question

Can we have any estimation of ∂-slopes of immersed ess surf?
§2. Distances between ∂-slopes

Def (Distance between slopes)

Let \(r_1, r_2 \) be two slopes on \(∂M \).

Distance \(Δ(r_1, r_2) \) \(\overset{\text{def}}{\leftrightarrow}\) minimal geometric intersection number of their representative.

Notation:

\[\chi(F) := \text{Euler characteristic of } S. \]
\[∂F := f(∂S). \]
\[#∂F := \text{number of conn compo of } ∂F. \]
Fact (Hass-Rubinstein-Wang)

Let M be a cpt ori 3-mfd with $\partial M \cong T^2$ s.t. $\text{int}M$ is complete hyperbolic. Let F_i be immersed essential surf in M with ∂-slope r_i for $i = 1, 2$.

$\Rightarrow \quad \Delta(r_1, r_2) < \frac{43}{4} \cdot \frac{-\chi(F_1)}{\#\partial F_1} \cdot \frac{-\chi(F_2)}{\#\partial F_2}$

In particular, if F_i’s are orientable,

$\Delta(r_1, r_2) < \frac{43}{4} \cdot \text{genus}(F_1) \cdot \text{genus}(F_2)$
§3. Results

Let F_1, F_2 be immersed essential surf in M with ∂-slopes r_1, r_2.

Theorem 1.

If M is Seifert fibered, then

$$\Delta(r_1, r_2) \leq 2 \left(\frac{-\chi(F_1)}{\#\partial F_1} + \frac{-\chi(F_2)}{\#\partial F_2} \right) + 4$$

In particular, if F_i's are orientable,

$$\Delta(r_1, r_2) \leq 4(\text{genus}(F_1) + \text{genus}(F_2))$$
Theorem 2.

If intM is hyperbolic and r_i’s are integral w.r.t. some meri-longi system on ∂M,

$$\Delta(r_1, r_2) < 6 \left(\frac{-\chi(F_1)}{\#\partial F_1} + \frac{-\chi(F_2)}{\#\partial F_2} \right)$$

In particular, if F_i’s are orientable,

$$\Delta(r_1, r_2) < 12(\text{genus}(F_1) + \text{genus}(F_2) - 1)$$

Compare to (H-R-W)’s

$$\Delta(r_1, r_2) < \frac{43}{4} \cdot \text{genus}(F_1) \cdot \text{genus}(F_2)$$
Theorem 3.

If M is a knot exterior in S^3 and F_i’s are immersed spanning surface without triple points, then

$$\Delta(r_1, r_2) \leq 2 \left(\frac{-\chi(F_1)}{\# \partial F_1} + \frac{-\chi(F_2)}{\# \partial F_2} \right) + 4$$
Example

\(K = (-2, 3, n) \)-pretzel knot

\(n = 7, 9, 11, \ldots \)

\(\exists F_i: \) embedded essential surf

with \(\partial \)-slope \(r_i \) for \(i = 1, 2 \) s.t.

\[
\begin{array}{cccccc}
-\chi(F_1) & \#\partial F_1 & r_1 & -\chi(F_2) & \#\partial F_2 & r_2 \\
n - 6 & 1 & 16 & n - 5 & 2 & \frac{n^2 - n - 5}{(n - 3)/2} \\
\end{array}
\]

Then \(\Delta(r_1, r_2) = n^2 + 7n - 29; \)

quadratic with respect to genera
Theorem 4.

If M is a small Seifert fibered space, then

$$\left(\frac{-\chi(F_1)}{\#\partial F_1} + \frac{-\chi(F_2)}{\#\partial F_2}\right) + 2 \leq \Delta(r_1, r_2)$$
Let M be a cpt ori 3-mfd with $\partial M \cong T^2$ s.t. intM is complete hyperbolic. If two slopes r_1, r_2 are both integral slopes w.r.t. some meri-longi system on ∂M, and both r_1-, r_2-surgeries yield non-hyperbolike manifolds, then $\Delta(r_1, r_2) \leq 8$. Thus there are at most NINE such integral non-hyperbolike surgeries.