Hyperbolicity of sections in surface bundles

Kazuhiro Ichihara

Osaka Sangyo University

Joint work with
Kimihiko Motegi
(Nihon University)
1. INTRODUCTION

K : knot in 3-mfd. M

K is **Hyperbolic** if $M - K$ admits a hyperbolic structure.

Question

How can we recognize whether a given knot is hyperbolic or not?

e.g., Using **DIAGRAM**

If K in S^3 has alternating diagram, then K is hyperbolic.
In this talk, we consider:

\(M_f: \text{surface bundle}, \) i.e.,
\[F \times [0, 1]/\{(x, 0) = (f(x), 1)\} \]

\(F: \) closed orientable surface of genus greater than 1.

\(f: F \rightarrow F, \) orientation preserving homeo.

\(K: \) knot appearing as section in \(M_f \)
2. RESULTS

\[M_f \begin{cases}
\text{Hyperbolic,} \\
\text{Small Seifert fibered, or} \\
\text{Toroidal}
\end{cases} \]

(i) \(M_f \): Hyperbolic

\begin{theorem}
In hyperbolic \(M_f \), every knot appearing as a section is hyperbolic.
\end{theorem}

Remark \(M_f \): hyperbolic

iff \(f \) isotopic pseudo-Anosov map
(ii) M_f: Small Seifert fibered

We may assume;

f is Periodic
i.e., $f^n = \text{identity}$ for some n

and

f is Irreducible, i.e.,
no invariant essential 1-submfd
(set of mutually non-parallel, non-trivial curves).
(ii) f has no fixed points

THEOREM 2
If f is periodic, irreducible, has no fixed points, then every knot in M_f appearing as a section is hyperbolic.
(iib) \(f \) has **Fixed points**

Fix a fixed point \(x_0 \) of \(f \) on \(F \).

\(K \): knot appearing as section

We may assume:

\(K \) runs through \(x_0 \times \{0\} \).

\(p : M_f \to F \) natural projection
Let $\alpha_K \in \pi_1(F, x_0)$: an element represented by the projection $p(K)$.

THEOREM 3

K is hyperbolic iff

$$\alpha_K f_*(\alpha_K) \cdots f_*^{n-1}(\alpha_K) \neq 1$$

in $\pi_1(F, x_0)$, where f_* is induced isom. of $\pi_1(F, x_0)$ and n is the period of f.
(iii) M_f: Toroidal

(iiiia) M_f: Toroidal Seifert

We may assume; f is Periodic

Assumption: f has fixed pt x_0

THEOREM 4

K is hyperbolic if and only if

$$\alpha_K f_*(\alpha_K) \cdots f_{n-1}^*(\alpha_K)$$

is filling.

\[\beta \text{ is filling if } \]

\[F - c = \text{disks} \]

for any c

with $[c] = \beta$
(iiiib) M_f: Toroidal, not Seifert

We may assume that;

there exists $C_f = \{C_1, C_2, \ldots\}$; set of f-invariant essential 1-submfd's.

Assumption

C_f is a finite set,
and, f has a fixed point x_0
Precisely:

\[C_f = \{C_1, \ldots, C_n\}: \]

a system of essential 1-submfds such that

\[f(C_i) = C_i, \quad f(N(C_i)) = N(C_i) \]

for some small nbd \(N(C_i) \), and any other isotopically \(f \)-invariant essential 1-submfd can be isotoped into \(N(C_i) \) for some \(i \).
THEOREM 5

Let c: representative of α_K intersecting C_f minimally.

If c intersects all C_i's and is well-terminated w.r.t. C_f, then K is hyperbolic.
A representative c of α_K is well-terminated if

$$f(\tau_i) \text{ is no homotopic to } \tau'_i \text{ rel } \{x_0\} \cup C_i$$
c.f. (Special case of Toroidal Seifert)

M_f: trivial surface bundle, i.e., $M_f = F \times S^1$

K: knot in M_f appearing as section

α_K: element of $\pi_1(F,x_0)$ represented by $p(K)$

THEOREM (Kra)

K is hyperbolic if and only if α_K is filling.