Bounds on exceptional surgery slopes

Kazuhiro Ichihara
Nara University of Education

including a joint work with
Kimihiko Motegi and Hyun-Jong Song
§0. Back grounds

3-dimensional manifold (3-manifold)

A topological space, which locally looks like 3-dimensional Euclidean space.

Example: Our Universe
Classification of 3-manifolds

Every closed orientable 3-manifold is:

- Reducible (containing essential 2-sphere),
- Toroidal (containing essential torus),
- Seifert fibered (foliated by circles), or
- Hyperbolic (admitting Riem. metric of curv. -1).

including famous Poincaré Conjecture (1904)
conjectured by Thurston (late ’70s)
established by Perelman (2002-03)

⇒ Let us study the relationships between 3-mfds.
§1. Introduction (Dehn Surgery)

Let M be a closed orientable 3-manifold and K a knot in M.

Dehn surgery

1) Remove a neighborhood of K from M,
2) Gluing a solid torus back (along slope γ)
Thm. [Wallace ('60), Lickorish ('62)]

Every pair of closed orientable 3-manifolds are related by a finite sequence of Dehn surgeries.

This gives “Network” on the set of 3-manifolds.
Recall: surgery slope

Dehn surgery on a knot \(K \) is determined by slope \(\gamma \) (i.e., isotopy class of simple closed curve) on the peripheral torus \(T \) of \(K \);

where \(\gamma = [f(\text{meridian of } V)] \)
Remark
When the knot is in the 3-sphere S^3, or $\text{ZH}S^3$ by using a standard meridian-longitude system, one can parametrize slopes by irreducible fractions.

i.e., \[\{ \text{slope} \} \overset{1:1}{\leftrightarrow} \left\{ \frac{p}{q} \right\} \]

Recall: $\text{ZH}S^3$
closed ori. 3-mfd with the same homology as S^3
Hyperbolic Surgery Theorem [Thurston]
Each hyperbolic knot admits only finitely many Dehn surgeries producing non-hyperbolic 3-mfds.

Recall: hyperbolic knot
= knot with hyperbolic complement

Such surgeries are now called exceptional surgeries.

We consider three Conjectures on exceptional surgeries.
§2. Conjectures & Result

Conjecture 1. (Denominator)

Recall: trivial surgery = the surgery along $1/0$

Conjecture 1. [Gordon]
Every non-trivial exceptional surgery slope p/q
for a hyperbolic knot in S^3 satisfies $|q| \leq 2$.

Known facts: If the obtained manifold is;
- reducible, then $|q| \leq 1$
 [Gordon-Luecke, 1987]
- toroidal, then $|q| \leq 2$
 [Gordon-Luecke, 1995]
- spherical, then $|q| \leq 2$
 [Boyer-Zhang, 1995]
Conjecture 2. (vs genera of knots)

In the following, $g(K)$: the genus of a knot K. (i.e., minimal genus of Seifert surfaces for K)

Conjecture 2. [Teragaito]
Every non-trivial exceptional surgery slope p/q for a hyperbolic knot in S^3 satisfies $|p/q| \leq 4g(K)$.

Known facts: If the obtained mfd is;
- non-hyperbolic, $|p/q| \leq 10.05 \ g(K)$ [I., 2001]
- including Klein bottle, $|p/q| \leq 4g(K)$ [I.-Teragaito, 2003]
- a lens space, $|p/q| \leq 4g(K) + 3$ [Rassmussen, 2004]
Theorem. [I.]

Let p/q be a non-trivial exceptional surgery slope for a hyperbolic knot K in $\mathbb{Z}HS^3$.

Then at least one of the following always holds:

(i) $|q| \leq 2$

(ii) $|p/q - R_F| \leq 4g(F)$ for \forall essential surface F,
 in particular, $|p/q| \leq 4g(K)$.

Therefore, for each hyperbolic knot in S^3, at least one of Conjectures 1 or 2 must be true.
Terminologies

Let $E(K)$ denote the exterior of a knot K in a 3-manifold M (i.e., M—(open tubular neighborhood of K))

For an embedded surface F in $E(K)$ with $\partial F \neq \emptyset$, (possibly non-orientable)

we call F essential if F is incompressible & ∂-incompressible, (e.g., minimal genus Seifert surface for a knot)

∂-slope of F means the slope on $\partial E(K)$ determined by ∂F, (we denote it by R_F)

$g(F) := (-\chi(F) - \#\partial F + 2)/2$. (when F is orientable, it means the usual genus)
[Sketch of Proof]

K : a hyperbolic knot in $\mathbb{Z}H S^3$

\textbf{Fact. [Gabai-Mosher (unpublished)]}

\exists \text{very full essential lamination } \mathcal{L} \text{ in } E(K).

A \text{ lamination} (i.e., a codim. one foliation on a closed subset) is called \textbf{essential} if it has

\begin{itemize}
 \item no sphere leaf,
 \item no torus leaf bounding a solid torus,
 \item irreducible complementary regions with incomp. boundary,
 \item no compressing monogons.
\end{itemize}
An essential lamination is called very full if every complementary region is an ideal polygonal bundle.

For such an essential lamination \mathcal{L}, we can find an annulus A connecting a leaf of \mathcal{L} to $\partial E(K)$.

One curve of the boundary ∂A determines a slope $d_{\mathcal{L}}$ on $\partial E(K)$, which we call degeneracy slope.
Case (i): $d_\mathcal{L} = 1/0$

Fact. [Wu, 1998]

For degeneracy slope $\delta_\mathcal{L}$ & exceptional surgery slope p/q, the distance $\Delta(p/q, \delta_\mathcal{L}) \leq 2$.

Recall:

The distance $\Delta(\gamma, \gamma')$ between slopes γ, γ' is the minimal geometric intersection number of the representatives of γ, γ'. For slopes on $\partial E(K)$, $\Delta(a/b, c/d) = |ad - bc|$.

Thus, if $d_\mathcal{L} = 1/0$, we have $|q| = \Delta(p/q, 1/0) \leq 2$.
Case (ii) : $d_L \neq 1/0$

In this case, we have

$$|p/q - R_F| \leq |p/q - d_L| + |d_L - R_F| \leq 2 + |d_L - R_F|$$

Proposition 1.

We have $\Delta(d_L, R_F) \leq 4g(F) - 2$.

Remark: [Gabai] already showed when F is a Seifert surface.

Since $\Delta(a/b, c/d) = |ad - bc| \geq |a/b - c/d|$, we have

$$|p/q - R_F| \leq 2 + |d_L - R_F| \leq 2 + 4g(F) - 2 = 4g(F) \quad \square$$
Remark

(i) A similar result of Fact [Wu] for essential surface was obtained by [Boyer-Gordon-Zhang, 2001].

(ii) A similar result of Proposition 1 for essential surface was obtained by [I.-Ozawa, 2002], which motivated this study.
§3. Another conjecture & Examples

Conjecture 3. [Goda-Teragaito]
If Dehn surgery on a hyperbolic knot K in S^3 along slope r produces a lens space, then

\[2g(K) + 8 \leq |r| \leq 4g(K) - 1 \]

Based on Proposition 1, together with known facts, we have a **Condition** such that, toward Conj 3, we only consider the knots satisfying it.
Suppose that Dehn surgery on a hyperbolic knot K in S^3 along slope r produces a lens space.

(spherical manifold, in general)

Proposition 2.

If $|r| > 4g(K) - 1$, then $E(K)$ admits a very full lamination with meridional degeneracy slope which have unique essential annulus connecting a leaf of \mathcal{L} to $\partial E(K)$.

Problem: Does there exist such a knot in S^3?
To find Counter-example...

Observation

A knot K in S^3 satisfies the conditions in Prop. 2 if K is hyperbolic and fibered, and Dehn surgery on K along the longitudinal slope gives a non-hyperbolic manifold.

Because, when a knot K is hyperbolic and fibered, we have the essential lamination which appears as a suspension of the invariant foliation for the monodromy of $E(K)$.

-3
Example 1 [Gabai]

[Gabai] (together with Kazez) first found that the knot 8_{20} satisfies the conditions in Prop 2. Generalizing 8_{20}, we see that the pretzel knots $P(2, n, -n)$ with $n \geq 3$:odd also satisfies the conditions in Prop 2.

However, these do not give counterexamples, by virtue of [Gordon, 1999].
Example 2

Theorem [I.-Motegi-Song, 2008]

∃ infinitely many small, fibered hyperbolic knots K in S^3 on each of which Dehn surgery along the longitudinal slope produces a Seifert fiber space.

Thus, by Lemma,

such knots are all satisfies the conditions in Prop 2.

However, these also do not give counterexamples, by recent preprint [Lackenby-Meyerhoff]...
Byproducts of Proposition 1.

(i) Any degeneracy slope for a very full essential lamination in a hyperbolic alternating knot exterior is meridional.
(a part of the conjecture by [Gabai-Kazez])

(ii) We obtain two bounds about ∂-slopes for a hyperbolic knot in $\mathbb{Z}HS^3$, at least one of which always holds:
This gives a generalization to the result on Montesinos knots obtained by [I.-Mizushima].