On exceptional surgeries on Montesinos knots

Kazuhiro Ichihara
Nihon University,
College of Humanities and Sciences

joint works with

In Dae Jong
(OCAMI)

Shigeru Mizushima
(Tokyo Institute of Technology)

Topology Seminar, Univ. of Melbourne, Aug 2, 2010
This talk is based on

- K. Ichihara and I.D. Jong
 Cyclic and finite surgeries on Montesinos knots

- K. Ichihara and I.D. Jong
 Toroidal Seifert fibered surgeries on Montesinos knots
 Preprint, arXiv:1003.3517

- K. Ichihara, I.D. Jong and S. Mizushima
 Seifert fibered surgeries on alternating Montesinos knots
 in preparation.
1. Introduction
As a consequence of the Geometrization Conjecture including famous Poincaré Conjecture (1904) conjectured by Thurston (late ’70s) established by Perelman (2002-03),
Exceptional surgeries on Montesinos knots

K. Ichihara

Introduction

Backgrounds

Dehn surgery

Exceptional surgery

Montesinos knot

Problem

Known facts

Toroidal

Seifert surgery

Known facts

Result

Summary

Classification of 3-manifolds

As a consequence of the **Geometrization Conjecture**

including famous **Poincaré Conjecture** (1904)

conjectured by Thurston (late ’70s)

established by Perelman (2002-03),

every closed orientable **3-manifold** is;

- **Reducible** (containing essential 2-sphere),
- **Toroidal** (containing essential torus),
- **Seifert fibered** (foliated by circles), or
- **Hyperbolic** (\exists Riem. metric of curv. -1).
• Attack the remaining **Open Problems**.
 (e.g., Virtually Haken Conjecture . . .)
• Attack the remaining **Open Problems**.
 (e.g., Virtually Haken Conjecture . . .)

• Relate **Geometric & Topological** invariants
 (e.g., Volume conjecture . . .)
What’s the NEXT?

• Attack the remaining Open Problems.
 (e.g., Virtually Haken Conjecture . . .)

• Relate Geometric & Topological invariants
 (e.g., Volume conjecture . . .)

• Study the Relationships between 3-mfds.
 (e.g., Dehn surgery . . .)
 (⇑ Today!)
Dehn surgery on a knot

- K: a knot in a 3-mfd M
- $E(K)$: the exterior of K ($:= M - (\text{open nbd. of } K)$)
Exceptional surgeries on Montesinos knots

K. Ichihara

Introduction

Backgrounds

Dehn surgery

Exceptional surgery

Montesinos knot

Problem

Known facts

Result

On alternating knots

Summary

Dehn surgery on a knot

- K: a knot in a 3-mfd M
- $E(K)$: the exterior of K ($:= M - (\text{open nbd. of } K)$)

Dehn surgery: Gluing a solid torus to $E(K)$

$$\gamma = \left[f(m) \right] : \text{surgery slope}$$
Dehn surgery on a knot

- K: a knot in a 3-mfd M
- $E(K)$: the exterior of K ($:= M - (\text{open nbd. of } K)$)

Dehn surgery: Gluing a solid torus to $E(K)$

\[\gamma = [f(m)]: \text{surgery slope} \]

Theorem [Lickorish (1962), Wallace (1960)]

Every pair of closed orientable 3-manifolds are related by a finite sequence of Dehn surgeries.
Exceptional surgery

Dehn surgery on a hyperbolic knot (i.e., knot with hyperbolic complement) yielding a non-hyperbolic mfd.

Theorem [Thurston (1978)]

Exceptional surgeries are only finitely many for each hyperbolic knot.
Exceptional surgery

Dehn surgery on a **hyperbolic** knot (i.e., knot with hyperbolic complement) yielding a non-hyperbolic mfd.

Theorem [Thurston (1978)]

Exceptional surgeries are **only finitely many** for each hyperbolic knot.

Each exceptional surgery is either:

- **Reducible** surgery (yielding a mfd. containing an essential S^2)
- **Toroidal** surgery (yielding a mfd. containing an essential T^2)
- **Seifert** surgery (yielding a Seifert fibered mfd.)
Montesinos knot $M(R_1, \ldots, R_l)$ in S^3

A knot admitting a diagram obtained by putting rational tangles R_1, \ldots, R_l together in a circle.

arcs on a 4-punctured sphere, and $\frac{1}{2}$-tangle

length of the knot

$= \text{minimal number of rational tangles}$

$M(\frac{1}{2}, \frac{1}{3}, -\frac{2}{3}) \uparrow$
Montesinos knot $M(R_1, \ldots, R_l)$ in S^3

A knot admitting a diagram obtained by putting rational tangles R_1, \ldots, R_l together in a circle.

arcs on a 4-punctured sphere, and $\frac{1}{2}$-tangle

length of the knot

= minimal number of rational tangles

$M(\frac{1}{2}, \frac{1}{3}, -\frac{2}{3}) \uparrow$

$P(a_1, \cdots, a_n) = M\left(\frac{1}{a_1}, \cdots, \frac{1}{a_n}\right) : (a_1, \cdots, a_n)$-pretzel knot.
Problem

Classify all the exceptional surgeries on hyperbolic Montesinos knots.
Problem

Classify all the exceptional surgeries on hyperbolic Montesinos knots.

Remark [Menasco], [Oertel], [Bonahon-Siebenmann]

Non-hyperbolic Montesinos knots are
\[T(2, n), \quad P(-2, 3, 3)(=T(3, 4)), \quad P(-2, 3, 5)(=T(3, 5)). \]

\[T(x, y) : \] the \((x, y)\)-torus knot.
Problem

Classify all the exceptional surgeries on hyperbolic Montesinos knots.

Remark [Menasco], [Oertel], [Bonahon-Siebenmann]

Non-hyperbolic Montesinos knots are
\[T(2, n), \quad P(-2, 3, 3)(=T(3, 4)), \quad P(-2, 3, 5)(=T(3, 5)). \]

\[T(x, y) \]: the \((x, y)\)-torus knot.

Remark

Dehn surgeries on the torus knots have been completely classified by Moser (1971).
Known facts: Length other than 3

\(K \): hyperbolic Montesinos knot with length \(l \)
Known facts: Length other than 3

\[K : \text{hyperbolic Montesinos knot with length } l \]

- \(l \leq 2 \Rightarrow K \) is a two-bridge knot.
 Exceptional surgeries for them are \textit{completely classified} [Brittenham-Wu (1995)].
Known facts: Length other than 3

K: hyperbolic Montesinos knot with length l

- $l \leq 2 \Rightarrow K$ is a two-bridge knot. Exceptional surgeries for them are completely classified [Brittenham-Wu (1995)].

- $l \geq 4 \Rightarrow K$ admits no exceptional surgery [Wu (1996)].
Exceptional surgeries on Montesinos knots

K. Ichihara

Introduction
Backgrounds
Dehn surgery
Exceptional surgery
Montesinos knot
Problem
Known facts

\[K : \text{hyperbolic Montesinos knot with length } l \]

- \[l \leq 2 \Rightarrow K \text{ is a two-bridge knot.} \]
 Exceptional surgeries for them are completely classified [Brittenham-Wu (1995)].

- \[l \geq 4 \Rightarrow K \text{ admits no exceptional surgery [Wu (1996)].} \]

Remains

Exceptional surgeries on \(M(R_1, R_2, R_3) \) (i.e. \(l = 3 \))
\item \textit{No} reducible surgeries on Montesinos knots [Wu (1996)].
Known facts : Reducible / Toroidal surgery

• \(\not\exists \) reducible surgeries on Montesinos knots [Wu (1996)].

• Toroidal surgeries on Montesinos knots are completely classified [Wu (2006)].
Known facts: Reducible / Toroidal surgery

- **No reducible** surgeries on Montesinos knots [Wu (1996)].

- **Toroidal** surgeries on Montesinos knots are completely classified [Wu (2006)].

Remains

Seifert surgeries on $M(R_1, R_2, R_3)$
2. Toroidal Seifert surgery
Known facts: Toroidal Seifert surgery

Recall: Each exceptional surgery is either:

- Reducible (conjectured: $\not\exists$ (Cabling Conjecture)),
- Toroidal,
- Seifert.
Recall: Each exceptional surgery is either:

- Reducible (conjectured: \nexists (Cabling Conjecture)),
- Toroidal,
- Seifert.

Remark [Eudave-Muñoz (2002)]

They are not exclusive.

(i.e., there are non-empty intersection)
Known facts: Toroidal Seifert surgery

Recall: Each exceptional surgery is either:

- Reducible (conjectured: \nexists (Cabling Conjecture)),
- Toroidal,
- Seifert.

Remark [Eudave-Muñoz (2002)]

They are not exclusive.

(i.e., there are non-empty intersection)

Theorem [Motegi (2003)]

A knot K with $|\text{Sym}^*(K)| > 2$ admits no toroidal Seifert surgery.
Known facts: Toroidal Seifert surgery

Recall: Each exceptional surgery is either:

- Reducible (conjectured: \(\not\exists \) (Cabling Conjecture)),
- Toroidal,
- Seifert.

Remark [Eudave-Muñoz (2002)]

They are not exclusive.

(i.e., there are non-empty intersection)

Theorem [Motegi (2003)]

A knot \(K \) with \(|\text{Sym}^*(K)| > 2 \) admits no toroidal Seifert surgery.

In particular, other than the trefoil knot, no two-bridge knots admit toroidal Seifert surgeries.
Theorem [I.-Jong]

Montesinos knots admit no toroidal Seifert surgeries other than the trefoil knot.
Theorem [I.-Jong]

Montesinos knots admit no **toroidal Seifert surgeries** other than the **trefoil knot**.

Corollary

A hyperbolic Montesinos knot admits no toroidal Seifert surgery.
Theorem [I.-Jong]

Montesinos knots admit no toroidal Seifert surgeries other than the trefoil knot.

Corollary

A hyperbolic Montesinos knot admits no toroidal Seifert surgery.

Remains

Atoroidal Seifert surgeries on $M(R_1, R_2, R_3)$ (i.e. yielding a Seifert mfd. over S^2 with ≤ 3 exceptional fibers)
3. Cyclic/Finite surgery
Problem

On (hyperbolic) knots in S^3, determine all Dehn surgeries giving 3-mfds with cyclic or finite fundamental groups.
Problem

On (hyperbolic) knots in S^3, determine all Dehn surgeries giving 3-mfds with cyclic or finite fundamental groups.

We call such surgeries cyclic surgeries / finite surgeries respectively.

Remark

- Such mfds are all Seifert fibered.
- On non-hyperbolic knots, such surgeries have been classified.
We give a complete classification of cyclic / finite surgeries on Montesinos knots.

Theorem [I.-Jong (2009)]

\(K\) : hyperbolic Montesinos knot
\(K(r)\) : the manifold obtained by surgery on \(K\) along the slope \(\gamma\) corresponding to \(r\).

- If \(\pi_1(K(r))\) is cyclic, then \(K = P(-2, 3, 7)\) and \(r = 18\) or \(19\).
- If \(\pi_1(K(r))\) is acyclic finite, then \(K = P(-2, 3, 7)\) and \(r = 17\), or \(K = P(-2, 3, 9)\) and \(r = 22\) or \(23\).
[**Watson**]: for $p \in \{5, 7, \cdots, 25\}$,
Surgery obstructions from Khovanov homology.
(by using Khovanov homology)

[**Futer-Ishikawa-Kabaya-Mattman-Shimokawa**]:
a complete classification of finite surgeries on
($-2, p, q$)-pretzel knots with p, q: odd positive.
Exceptional surgeries on Montesinos knots

K. Ichihara

Introduction

Backgrounds

Dehn surgery

Exceptional surgery

Montesinos knot

Problem

Known facts

T oroidal Seifert surgery

Known facts

Result

Cyclic/Finite surgery

Result

On alternating knots

Alternating knot

Summary

Related results

[Watson]: for $p \in \{5, 7, \cdots, 25\}$,

Surgery obstructions from Khovanov homology.

(by using Khovanov homology)

[Futer-Ishikawa-Kabaya-Mattman-Shimokawa]:

a complete classification of finite surgeries on

$(-2, p, q)$-pretzel knots with p, q: odd positive.

Remains

Atoroidal Seifert surgeries on $K = M(R_1, R_2, R_3)$ with

$|\pi_1(K(r))| = \infty$

(i.e. yielding a Seifert mfd. over $S^2(n_1, n_2, n_3)$ with

$\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} \leq 1$)
4. On alternating knots
Alternating knots

Alternating knot

An alternating diagram = the crossings alternate under, over, under, over, as you travel along the knot. A knot is alternating if it admits an alternating diagram.

\[P(3, 5, 8) = \]

\[P(-3, 5, 8) = \]
Alternating knots

Alternating knot

An alternating diagram = the crossings alternate under, over, under, over, as you travel along the knot. A knot is alternating if it admits an alternating diagram.

\[P(3, 5, 8) = \quad P(-3, 5, 8) = \]

\[\begin{array}{c}
\quad \\
\end{array} \]

Remark [Lickorish-Thistlethwaite]

A Montesinos knot is alternating if and only if its reduced Montesinos diagram is alternating. In particular, \(M(R_1, \ldots, R_l) \) is alternating if \(R_1, \ldots, R_l \) have the same sign.
Theorem [I.-Jong-Mizushima]

If $K = M(R_1, R_2, R_3)$ with $R_1, R_2, R_3 > 0$ (i.e. K is alternating) admits an atoroidal Seifert surgery, then $K = P(a, b, c)$ with odd integers $3 \leq a < b < c$.
Results: atoroidal Seifert surgery

Theorem [I.-Jong-Mizushima]

If $K = M(R_1, R_2, R_3)$ with $R_1, R_2, R_3 > 0$ (i.e. K is alternating) admits an atoroidal Seifert surgery, then $K = P(a, b, c)$ with odd integers $3 \leq a < b < c$.

Theorem [Wu]

If $M\left(\frac{p_1}{q_1}, \frac{p_2}{q_2}, \frac{p_3}{q_3}\right)$ with $q_1 \leq q_2 \leq q_3$ admits an atoroidal Seifert surgery, then $q_1 = 2$, $(q_1, q_2) = (3, 3)$, or $(q_1, q_2, q_3) = (3, 4, 5)$.
Results: atoroidal Seifert surgery

Theorem [I.-Jong-Mizushima]

If \(K = M(R_1, R_2, R_3) \) with \(R_1, R_2, R_3 > 0 \) (i.e. \(K \) is alternating) admits an atoroidal Seifert surgery, then \(K = P(a, b, c) \) with odd integers \(3 \leq a < b < c \).

Theorem [Wu]

If \(M(p_1/q_1, p_2/q_2, p_3/q_3) \) with \(q_1 \leq q_2 \leq q_3 \) admits an atoroidal Seifert surgery, then \(q_1 = 2, (q_1, q_2) = (3, 3) \), or \((q_1, q_2, q_3) = (3, 4, 5) \).

Corollary

An alternating hyperbolic Montesinos knot with length 3 admits no Seifert surgery.
Exceptional surgeries on Montesinos knots

K. Ichihara

Introduction

Backgrounds

Dehn surgery

Exceptional surgery

Montesinos knot

Problem

Known facts

Toroidal Seifert surgery

Known facts

Result

Cyclic/Finite surgery

Result

On alternating knots

alternating knot

Summary
Suppose that a hyperbolic Montesinos knot K admits an exceptional surgery. Then
Suppose that a hyperbolic Montesinos knot K admits an exceptional surgery. Then

(I) $l \leq 2$ (i.e., K is a two-bridge knot)
 \Rightarrow such surgeries are completely classified.
Suppose that a hyperbolic Montesinos knot K admits an exceptional surgery. Then

\begin{itemize}
 \item[(I)] $l \leq 2$ (i.e., K is a two-bridge knot) \quad \Rightarrow \text{such surgeries are completely classified.}$
 \\
 \item[(II)] $l = 3$: and,
\end{itemize}
Suppose that a hyperbolic Montesinos knot K admits an exceptional surgery. Then

(I) $l \leq 2$ (i.e., K is a two-bridge knot)
 \Rightarrow such surgeries are completely classified.

(II) $l = 3$: and,

- K admits no reducible surgery,
Suppose that a hyperbolic Montesinos knot \(K \) admits an exceptional surgery. Then

(I) \(l \leq 2 \) (i.e., \(K \) is a two-bridge knot)
\[\Rightarrow \text{such surgeries are completely classified.} \]

(II) \(l = 3 \) : and,

- \(K \) admits no reducible surgery,
- toroidal surgeries on \(K \) are classified,
Suppose that a hyperbolic Montesinos knot K admits an exceptional surgery. Then

(I) $l \leq 2$ (i.e., K is a two-bridge knot) \[\Rightarrow \] such surgeries are completely classified.

(II) $l = 3$: and,

- K admits no reducible surgery,
- toroidal surgeries on K are classified,
- K admits no toroidal Seifert surgery,
Suppose that a hyperbolic Montesinos knot K admits an exceptional surgery. Then

(I) $l \leq 2$ (i.e., K is a two-bridge knot)
\Rightarrow such surgeries are completely classified.

(II) $l = 3$: and,

- K admits no reducible surgery,
- toroidal surgeries on K are classified,
- K admits no toroidal Seifert surgery,
- cyclic / finite surgeries on K are classified,
Suppose that a hyperbolic Montesinos knot K admits an exceptional surgery. Then

(I) $l \leq 2$ (i.e., K is a two-bridge knot) \quad \Rightarrow \text{such surgeries are completely classified.}$

(II) $l = 3$: and,

- K admits no reducible surgery,
- toroidal surgeries on K are classified,
- K admits no toroidal Seifert surgery,
- cyclic / finite surgeries on K are classified,
- in addition, if K is alternating, then K admits no Seifert surgery.