Bounds on numerical boundary slopes for Montesinos knots

Kazuhiro Ichihara
Osaka Sangyo Univ.
Joint work with

Shigeru Mizushima
(Tokyo Institute of Technology)

Preprint:
Kazuhiro Ichihara and Shigeru Mizushima
“Bounds on numerical boundary slopes for Montesinos knots”
Contents:

§1. Definitions and Notations

§2. Results
 (a) upper bound on difference
 (b) upper bound on denominator

§3. Key of Proofs
 (Hatcher-Oertel’s Algorithm)

§4. Experiments (in progress)
 - on a lower bound on diameter -
§1. Definitions and Notations

\(M \) : a compact orientable 3-manifold with single toral boundary \(\partial M \).

Definition (essential surface)

A compact, connected surface \(F \) properly embedded in \(M \) is called **essential** if it is incompressible and not boundary parallel.
Definition (slope)
A slope on ∂M is the isotopy class of a simple closed curve on ∂M.

Definition (boundary slope)
The ∂-slope of F is the slope determined by boundary components of F.
Definition (slope)
A slope on ∂M is the isotopy class of a simple closed curve on ∂M.

Definition (boundary slope)
The ∂-slope of F is the slope determined by boundary components of F.

Facts
∂-slopes are only finitely many (Hatcher).
There are at least two ∂-slopes (Culler-Shalen).
If a meridian-longitude system on ∂M is fixed, a slope is represented by a rational number or ∞. i.e. \[
\{ \text{slopes on } \partial M \} \leftrightarrow \mathbb{Q} \cup \{\infty\}\]
If a meridian-longitude system on ∂M is fixed, a slope is represented by a rational number or ∞. i.e. \[
\{\text{slopes on } \partial M\} \leftrightarrow \mathbb{Q} \cup \{\infty\}
\]

Definition
A slope regarded as a rational number is called a numerical slope.

Goal
Study numerical properties of ∂-slopes for Montesinos knots.
Montesinos knot $K(\frac{p_1}{q_1}, \frac{p_2}{q_2}, \ldots, \frac{p_n}{q_n})$

Assume that:

- the number of tangles n is at least 3,
- all fractions are non-integral.
§2. Results

In the following, we assume that all surfaces are orientable just for simplifying the statements.

In fact, we have general results (including non-orientable case).

Please see our preprint.
2-1. Upper bound on difference

Let r_1, r_2 be ∂-slopes of essential surfaces of genus g_1, g_2 for a Montesinos knot.

Consider the difference $|r_1 - r_2|$ of two ∂-slopes.
2-1. Upper bound on difference

Let r_1, r_2 be ∂-slopes of essential surfaces of genus g_1, g_2 for a Montesinos knot.

Consider the difference $|r_1 - r_2|$ of two ∂-slopes.

Theorem 1.

$$|r_1 - r_2| \leq 4 (g_1 + g_2)$$
c.f.

Theorem. [I]

In general, if K is hyperbolic, then $|r_1 - r_2| \leq 12 (g_1 + g_2 - 1)$
Theorem. [I]
In general, if \(K \) is hyperbolic, then \(|r_1 - r_2| \leq 12 (g_1 + g_2 - 1) \)

Corollary 1. (Toroidal Surgery)
If \(r \)-surgery on a Montesinos knot \(K \) yields a \text{toroidal} 3-mfd, then \(|r| \leq 4g + 4 \), where \(g \) denotes the genus of \(K \).
Definition (Distance between slopes)
The distance $\Delta(r_1, r_2)$ of two slopes means the minimal geometric intersection number of their representatives.

Remark that

(1) Δ is not a distance in the usual sense.

(2) For $r_i = p_i/q_i$, $\Delta(r_1, r_2) = |p_1 \cdot q_2 - p_2 \cdot q_1|$.
Corollary 2. (bound on Δ)

For a non-torus Montesinos knot,

$\Delta(r_1, r_2) < 8(2g_1 - 1)(2g_2 - 1)$
Corollary 2. (bound on Δ)

For a non-torus Montesinos knot,
$$\Delta(r_1, r_2) < 8(2g_1 - 1)(2g_2 - 1)$$

Facts. (Torisu)

For a non-cabled knot,
$$\Delta(r_1, r_2) < 36(2g_1 - 1)(2g_2 - 1)$$

Facts. (Hass-Rubinstein-Wang)

For a hyperbolic knot,
$$\Delta(r_1, r_2) < \frac{43}{4}(2g_1 - 1)(2g_2 - 1)$$
2-2. Upper bound on denominator

Let \(r = \frac{p}{q} \) be a \(\partial \)-slope of an essential surface of genus \(g \) for a Montesinos knot (\(q \geq 1 \)).

Consider the denominator \(q \) of the \(\partial \)-slope.
2-2. Upper bound on denominator

Let \(r = p/q \) be a \(\partial \)-slope of an essential surface of genus \(g \) for a Montesinos knot \((q \geq 1)\).

Consider the denominator \(q \) of the \(\partial \)-slope.

Theorem 2.

\[
\begin{cases}
q \leq g + 1 & (g = 0, 1) \\
q \leq 2g - 1 & (g \geq 2).
\end{cases}
\]

Remark: this is best possible.
Facts.

(Torisu) For a composite knot, $q \leq g$.

(Menasco-Thistlethwaite) For an alternating knot, $q \leq g$.

(Gordon-Luecke) If $g = 0$, then $q = 1$.
Facts.

(Torisu) For a composite knot, $q \leq g$.

(Menasco-Thistlethwaite)

For an alternating knot, $q \leq g$.

(Gordon-Luecke) If $g = 0$, then $q = 1$.

Corollary 3. (c.f. Eudave-Munoz)

No Montesinos knot other than torus knot admits an essential surface of genus 0. Thus the Cabling Conjecture is true for Montesinos knots.
§3. Key of Proofs

Algorithm by Hatcher and Oertel

: finds and enumerates all boundary slopes for a given Montesinos knot.

: is based on Algorithm by Hatcher and Thurston for two-bridge knots.

: seems to be algebraic or combinatorial.

(i) produces candidate surfaces.

(ii) verifies incompressibility of surfaces.
Dunfield’s software implements Algorithm of Hatcher and Oertel.

is available from

http://www.its.caltech.edu/~dunfield/montesinos/index.html

is written in Python language.

Computer experiments have been very helpful!!
In algorithm,

essential surface

\[\updownarrow \]

system of sequences of irreducible fractions

(we call an edge path system)

Example. A Seifert surface for \(K(-\frac{1}{2}, \frac{1}{3}, \frac{1}{7}) \)

\[
\begin{align*}
\langle \infty \rangle & - \langle \frac{0}{1} \rangle - \langle -\frac{1}{2} \rangle \\
\langle \infty \rangle & - \langle \frac{1}{1} \rangle - \langle \frac{1}{2} \rangle - \langle \frac{1}{3} \rangle \\
\langle \infty \rangle & - \langle 1 \rangle - \langle \frac{1}{2} \rangle - \langle \frac{1}{3} \rangle - \langle \frac{1}{4} \rangle - \langle \frac{1}{5} \rangle - \langle \frac{1}{6} \rangle - \langle \frac{1}{7} \rangle
\end{align*}
\]
Decompose S^3 into balls B_1, \cdots, B_n. $B_i \supset T_i$
An essential surface F can be isotoped to be in a **standard position** in each B_i:

- (a) base disks
- (b) saddle
- (c) compound
- (d) cap
In $B_i \supset S^2 \times [0, 1]$, the intersection curves of F and level spheres give an edge path system.
We can use many numerical properties.

For example: \[\langle \frac{p}{q} \rangle - \langle \frac{r}{s} \rangle \iff |p \cdot s - q \cdot r| = 1 \]
Our next project is to get a lower bound on diameter of the set of \(\partial \)-slopes.

Let \(r_1, r_2 \) be the greatest and least \(\partial \)-slopes for a knot \(K \).

Definition. The difference \(|r_1 - r_2| \) of the two \(\partial \)-slopes is called the **diameter** of the set of \(\partial \)-slopes, and denoted by \(Diam(K) \).
Facts.

(Culler-Shalen) \(Diam(K) \geq 2 \)

(Ishikawa-Mattman-Shimokawa)

\[Diam(K) > \frac{\|\beta\|}{q\|\mu\|} \]
Facts.

(Culler-Shalen) \(Diam(K) \geq 2 \)

(Ishikawa-Mattman-Shimokawa)

\[Diam(K) > \frac{||\beta||}{q||\mu||} \]

Problem.

What about for Montesinos knots?
Are there sharper bounds
(related to genera of surfaces) ?

We performed experiments about relation between \(Diam(K) \) and topological quantities of surfaces.
Computer Experiments:

Via Dunfield’s computer program, we performed the following process iteratively:

- Find the greatest and least ∂-slopes r_1, r_2.
- Find essential surfaces F_i with ∂-slope r_i.
- Calculate $r_1 - r_2$ and $(-\chi_1/\#s_1) + (-\chi_2/\#s_2)$.

By plotting the obtained data, we have graphs.
(a) Montesinos knot: \[K = K\left(\frac{p_1}{q_1}, \frac{p_2}{q_2}, \frac{p_3}{q_3}\right) \]

Conditions:

- \(|p_i| \leq 7, \ 2 \leq q_i \leq 7\)
- \(p_i/q_i\) is not an integer.
- \(p_i/q_i\) is an irreducible fraction.
- \(K\) must be a knot (not a link).

<table>
<thead>
<tr>
<th>Set of three fractions</th>
<th>175,616</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of Knots</td>
<td>95,952</td>
</tr>
</tbody>
</table>
Montesinos knots \((n = 3)\)

\[
Diam = \left(-\frac{\chi_1}{\#s_1} \right) + \left(-\frac{\chi_2}{\#s_2} \right)
\]
(b) Pretzel knot \(K = P(q_1, q_2, q_3) \)

\[= \text{Montesinos knot} \quad K(\frac{\pm 1}{q_1}, \frac{\pm 1}{q_2}, \frac{\pm 1}{q_3}) \]

Conditions:

- \(2 \leq q_i \leq 20 \)
- \(K \) must be a knot (not a link).

<table>
<thead>
<tr>
<th>Set of three fractions</th>
<th>54,872</th>
</tr>
</thead>
<tbody>
<tr>
<td>The number of Knots</td>
<td>25,272</td>
</tr>
</tbody>
</table>
\[(-\chi_1/#s_1) + (-\chi_2/#s_2) \]
Consequently, we have:

Conjecture

\[Diam(K) \geq 2\left(\frac{-\chi_1}{\#s_1} + \frac{-\chi_2}{\#s_2}\right) \]

In particular, \(Diam(K) \geq 4 \).