Hyperbolic structures
and Dehn surgeries
on the figure-eight knot
complement

Kazuhiro Ichihara

(Dept. of Math. & Comp. Sci.
Tokyo Inst. of Tech.)
§1 How to decompose $S^3 - \bigcirc = \bigtriangleup \cap \bigtriangleup$

§2 Hyperbolic structures on $S^3 - \bigcirc$

§3 Dehn surgery and the 2π-theorem

Goal To show

Theorem

On the figure-eight knot, all but at most 12 Dehn surgeries yield 3-manifolds with a metric of **negative curvature**.

by using the Gromov-Thurston's 2π-theorem.
§1 How to decompose S^3—

Span 4 surfs!
§1 How to decompose $S^3 - \mathbb{R}$

Span 4 surfs!
§1 How to decompose $S^3 - \mathcal{B}$

Span 4 surfs!
§1 How to decompose $S^3 - \mathcal{O}$

Span 4 surf!
§1 How to decompose S^3 Span 4 surfs!
Consider the cylinder X.

Cut $S^3 - K$ along $A \sim D$ into T_1, T_2.
Consider the cylinder X.

Cut $S^3 - K$ along $A \sim D$ into τ_1, τ_2.

S^3
Cut $S^3 - K$ along $A \sim D$ into τ_1, τ_2.

Consider the cylinder X.
Consider the cylinder X.

Cut $S^3 - K$ along $A \sim D$ into τ_1, τ_2.
Consider the side of τ_1 only.

Cutting along e_1.
\[S^3 - \text{Link} = \tau_1 \cup \tau_2 \]
§2 Hyperbolic structures on S^3.

Let M be a knot complement having a decomposition by ideal tetrahedra.

Question.

When does M admit a hyperbolic structure?

Ans.

It is the case that the glueing conditions are satisfied.
Poincaré model

The unit ball B^3, i.e.,

$$\{ (x, y, z) \in \mathbb{R}^3 \mid r := \sqrt{x^2 + y^2 + z^2} < 1 \}$$

with the metric

$$\frac{dx^2 + dy^2 + dz^2}{(1 - r^2)^2}.$$

Upper half space model

$\mathbb{R}_+^3 := \{ (x, y, t) \in \mathbb{R}^3 \mid t > 0 \}$

with the metric $\frac{dx^2 + dy^2 + dt^2}{t^2}$.
To describe the conditions, we introduce the modulus of an edge \(e \) in an ideal tetrahedron \(\tau \).

Let \(Z_\tau(e) \) be the complex number corresponding to \(v_2 \), and call it the modulus of the edge \(e \).
The glueing conditions
Around each edge, if
1. the product of the moduli is 1 and
2. the sum of the dihedral angles is 2π,
then M admits a hyperbolic structure.

\[\text{not satisfied.}\]

\[\text{View from } \infty.\]

\section*{Remark}
The structure may be incomplete.
For the figure-eight knot complement,

\[S^3 - K = \tau_1 \cup \tau_2, \]

if \(\tau_1, \tau_2 \) are ideal regular tetrahedra
(i.e., all dihedral angles are \(\pi/3 \)),

then the glueing conditions are satisfied,
and \(S^3 - K \) has a complete hyperbolic structure. (For completeness, details will be given in the next talk.)
§3 Dehn surgery and the 2π-theorem

Let K be a knot in a 3-manifold M and $N(K)$ denote the regular neighborhood of K in M.

\[M \mapsto N := \bigg(M - \overset{\circ}{N}(K) \bigg) \bigcup_{f} \text{(solid torus } V \bigg), \]

where $f : \partial V \to \partial N(K)$ is a homeo.

We say that N is obtained by a Dehn surgery on K.

Remark. A Dehn surgery is determined by the isotopy class of the curve $f(\text{meridian of } V)$ on $\partial N(K)$.
Hyperbolic Dehn Surgery Theorem
All but finitely many Dehn surgeries on a hyperbolic knot (i.e., a knot with the complete hyperbolic complement) yield closed hyperbolic 3-manifolds.

In the rest of the talk, we will show

Theorem
On the figure-eight knot, all but at most 12 Dehn surgeries yield 3-manifolds with a metric of negative curvature.

To show this, we use the Gromov-Thurston’s 2π-theorem.
Let K be a hyperbolic knot in a 3-manifold M and take $N(K)$ s.t. $\partial N(K)$ is a horotorus.

Then $\partial N(K)$ has an Euclidean structure.

Let N be the manifold obtained by Dehn surgery on K, i.e.,

$$N = \left(M - \overset{\circ}{N}(K) \right) \cup_{f} (\text{solid torus } V),$$

where $f : \partial V \to \partial N(K)$ is a homeo.

The Gromov-Thurston's 2π-theorem

If the length of $f(\text{meridian of } V) > 2\pi$, then N has a metric of negative curvature.
Outline of the proof.

We will construct a negatively curved metric on V. On $V \cong D^2 \times S^1$,

\[ds^2 := dr^2 + (f(r))^2 d\mu^2 + (g(r))^2 d\lambda^2, \]

where $f(r_0) = 0$.

We will describe the conditions that

(1) ds^2 is a non-singular metric,

(2) ds^2 has negative sectional curvatures,

(3) ds^2 mutchs with the metric on $E(K)$,

where $E(K)$ denotes $M - \overset{\circ}{N}(K)$.
(1) The singularity appears along the core circle of V. The cone-angle is

$$\lim_{r \to r_0} \frac{1}{r - r_0} \int_0^1 f(r) d\mu = f'(r_0).$$

Hence, the condition is $f'(r_0) = 2\pi$.

(2) By direct calculations from Riemannian geometry, the condition is

$$\frac{f''}{f}, \frac{g''}{g}, \frac{f'g'}{fg} > 0.$$
Near \(\partial E(K) \), the metric on \(E(K) \) is of the above type with

\[
f(r) = \ell_1 e^r, \quad g(r) = \ell_2 e^r,
\]

where \(\ell_1, \ell_2 \) are some constants.

A face of tetrahedra.
Here, note that l_1 equals to the length of $f(\text{meridian of } V)$.

$$l_1 = \int_0^1 a_i e^r \, dr,$$ \hspace{1cm} \text{at } r = 0

\text{If } l_1 > 2\pi, \\
\text{conditions (1), (2), (3) are satisfied !!}
Now, let K be the figure-eight knot.

Question

How many closed (geodesic) curves on $\partial N(K)$ of length $\leq 2\pi$?

Take the maximal $N(K)$.

![Diagram](just before touch!)

Then, $\partial N(K)$ has the following Euclidean structure.
Consider the universal cover of $\partial N(K)$.

There are 12 curves!!

In the next talk, we will see that all but at most 10 Dehn surgeries yield hyperbolic 3-manifolds.