Two-bridge knots admit no purely cosmetic surgeries

In Dae Jong

Kindai University

joint work with
Kazuhiro Ichihara (Nihon University)
Thomas W. Mattman (California State University, Chico)
Toshio Saito (Joetsu University of Education)

MSJ Autumn Meeting 2020 @Kumamoto University
2020/9/22

Ref. arXiv:1909.02340
Dehn surgery on a knot

K : a knot in a 3-manifold M

Dehn surgery on K

1) remove the open tubular neighborhood of K from M
2) glue a solid torus back (along a slope γ)
Cosmetic surgery conjecture

It is natural to ask:

Can distinct Dehn surgeries give the same manifold?

Conjecture. [Problem 1.81(A) in Kirby’s list]

Two Dehn surgeries on inequivalent slopes are never purely cosmetic.

- Two slopes for a knot K are called *equivalent* if \exists homeo. of the exterior of K taking one slope to the other.
- Two surgeries on K are called *purely cosmetic* if \exists orientation preserving homeo. between the manifolds obtained by the surgeries.
Main result

Theorem [Ichihara-J.-Mattman-Saito]
Two-bridge knots admit no purely cosmetic surgeries.

Our argument, based on a recent result by Hanselman, uses several invariants of knots or 3–manifolds; for knots, the signature and some finite type invariants, and for 3–manifolds, the $SL(2, \mathbb{C})$ Casson invariant.

Also, we have the following.

Theorem [Ichihara-J.-Mattman-Saito]
All alternating fibered knots and all alternating pretzel knots admit no purely cosmetic surgeries.
Hanselman’s result

\(K \): an alternating knot in \(S^3 \)
\(g(K) \): the genus of \(K \)
\(\sigma(K) \): the signature of \(K \)

Lemma ([Hanselman, arXiv:1906.06773])

If \(K \) admits purely cosmetic surgeries, then \(g(K) = 2, \sigma(K) = 0 \), and the surgery slopes must be either \(\pm 1 \) or \(\pm 2 \).

The latter two assertions follow from [Hanselman, Theorem 5] directly. Also from the same theorem, the Alexander polynomial of \(K \) must be \(\Delta_K(t) = nt^2 - 4nt + (6n + 1) - 4nt^{-1} + nt^{-2} \) for some positive integer \(n \). Then, by the work of Murasugi and Crowell, the genus \(g(K) \) of \(K \) must be 2.
By using Jones polynomial of knots, we have the following.

Lemma ([Ichihara-Wu, 2019])

If a 2-bridge knot of genus two admitted purely cosmetic surgeries, then it would be associated to the continued fraction $[2x, 2y, -2(x+y), 2x]$ for integers $x > 0$ and $y \neq 0$.

Sample picture:

![Diagram of knots]

Figure 1: Diagram of knots $[2x, 2y - 1, 1, 2x + 2y - 2, 1, 2x - 1]$
Signature $\sigma(K)$

Let K be a two-bridge knot associated to the continued fraction $[2x, 2y, -2(x + y), 2x]$ for integers $x > 0$ and $y \neq 0$.

Proposition 1.

If K admits purely cosmetic surgeries, then $y < 0$ and $(x + y) > 0$.

We use the following result of [Lee] and [Traczyk]:
for a reduced alternating diagram D of an oriented non-split alternating link L,

$$\sigma(L) = o(D) - y(D) - 1$$

It remains to handle the case of $y < 0$ and $(x + y) > 0$. In this case, the simple continued fraction for K is $[2x - 1, 1, -(2y + 1), 2(x + y) - 1, 1, 2x - 1]$.
Let K be a two-bridge knot associated to the continued fraction $[2x - 1, 1, -(2y + 1), 2(x + y) - 1, 1, 2x - 1]$ for some $x > 0$, $y < 0$ with $(x + y) > 0$.

Proposition 2.

If K admits purely cosmetic surgeries, then $x = -2y$.

Note that the knot is amphichiral when $x = -2y$.

Our key ingredient is the $SL(2, \mathbb{C})$ Casson invariant, originally introduced by [Curtis].

A practical surgery formula for two-bridge knots was obtained by [Boden-Curtis], and was used for a study of cosmetic surgeries on two-bridge knots in [Ichihara-Saito].
Finite type invariants

Note that if $x = -2y$, then the knot K is associated to the continued fraction $[4n, -2n, -2n, 4n]$ for $n > 0$.

Proposition 3.

The two-bridge knot K associated to the continued fraction $[4n, -2n, -2n, 4n]$ for a positive integer n admits no purely cosmetic surgeries.

We use the obstructions obtained by [Boyer-Lines] and [Ito]: If a knot K has a purely cosmetic pair of surgeries, then

- $a_2(K) = 0$
- $j_4(K) \neq 14n^4$ and $j_4(K) \neq 284n^4$ for some $n > 0$.

On the other hand, by direct calculations, we have

$$\nabla_K(z) = 1 + 4n^4z^4 \quad \text{and} \quad j_4(K) = -12n^4$$

for $K = C[4n, -2n, -2n, 4n]$ with $n > 0$.