Crosscap numbers of pretzel knots

Kazuhiro Ichihara (Osaka Sangyo Univ.)

Joint work with
Shigeru Mizushima (Tokyo Inst. of Tech.)
§ 1. Introduction

Any knot in S^3 bounds an **orientable** subsurface in S^3; called a **Seifert surface**.
§ 1. Introduction

Any knot in S^3 bounds an orientable subsurface in S^3; called a Seifert surface.

Any knot in S^3 also bounds a non-orientable subsurface in S^3. (consider checkerboard surfaces)
The genus of a knot K is defined to be the minimal genus of a Seifert surface for K.
The genus of a knot K is defined to be the minimal genus of a Seifert surface for K.

Definition. [Clark, ’78]

The crosscap number $\gamma(K)$ of a knot K is defined to be the minimal 1st betti number of a non-orientable surface spanning K in S^3.

For completeness we define $\gamma(K) = 0$ if and only if K is the unknot.
Example

$K = 4_1$: Figure-eight knot
Example

$K = 4_1$: Figure-eight knot

K bounds

a once-punctured Klein bottle S;

$\Rightarrow \gamma(K) \leq \beta_1(S) = 2$
Example

$K = 4_1$: Figure-eight knot

K bounds

a once-punctured Klein bottle S;

$\Rightarrow \gamma(K) \leq \beta_1(S) = 2$

In fact, $\gamma(K) = 2$: by

Proposition [Clark]

$\gamma(K) = 1$ iff K is a $(2, n)$-cabled knot.
Known results:

- $\gamma(7_4) = 3$
 (Murakami-Yasuhara, ’95)

- Formula for torus knots (Teragaito, ’04)

- Algorithm for two-bridge knots
 (Hirasawa-Teragaito,)
§ 2. Result

We determine \(\gamma(K) \) for pretzel knots.
§ 2. Result

We determine $\gamma(K)$ for pretzel knots.

K: pretzel knot $P(p_1, p_2, \ldots, p_n)$.
§ 2. Result

We determine $\gamma(K)$ for pretzel knots.

K: pretzel knot $P(p_1, p_2, \ldots, p_n)$.

K is a knot \Rightarrow

(a) some p_i is even, and the others are odd, or,
(b) n is odd, and p_1, p_2, \ldots, p_n are all odd.
Observations:

For (type a), $\gamma(K) \leq n - 1$

\[
\left(\text{consider naturally spanned \ non-orientable surface} \right);
\]

\[
\left(\text{consider naturally spanned Seifert surface, and} \right);
\]
Observations:

For (type a), $\gamma(K) \leq n - 1$

(consider naturally spanned non-orientable surface)

For (type b), $\gamma(K) \leq n$

(consider naturally spanned Seifert surface, and adding a small half-twist)
Theorem.

Let K be a pretzel knot $P(p_1, \cdots, p_n)$. If the length $n \geq 2$, then

$$\gamma(K) = \begin{cases} n - 1 & \text{(type a)} \\ n & \text{(type b)} \end{cases}$$

Remark:

¢ For $n = 2$, K is $(2, k)$-cabled, and $\gamma(K) = 1$.
¢ For $n = 1$, K is trivial, and $\gamma(K) = 0$.
¢ For (type b), $\gamma(K) = 2g(K) + 1$ holds.
Theorem.

Let K be a pretzel knot $P(p_1, \ldots, p_n)$. If the length $n \geq 2$, then

$$
\gamma(K) = \begin{cases}
\ n - 1 & \text{(type a)} \\
\ n & \text{(type b)}
\end{cases}
$$

Remark:

- For $n = 2$, K is $(2, k)$-cabled, and $\gamma(K) = 1$.
- For $n = 1$, K is trivial, and $\gamma(K) = 0$.
- For (type b), $\gamma(K) = 2g(K) + 1$ holds.
§ 3. Outline of Proof

Let K be a pretzel knot. Actually we prove:
§ 3. Outline of Proof

Let K be a pretzel knot. Actually we prove:

Proposition

Any essential surface F for K satisfies

$$\frac{-\chi}{\#s}(F) \geq \begin{cases}
 n - 3 & \text{(type a)} \\
 n - 2 & \text{(type b)}
\end{cases}$$ \hspace{1cm} (1)$$

Moreover, if the equality holds,

F fails to be a non-ori spanning surface.
\(\chi \): the Euler characteristic of \(F \)

\(\#s \): the number of sheets

i.e. minimal number of \(\partial F \cap \text{meridian} \)
χ: the Euler characteristic of \(F \)

\#s: the number of sheets

i.e. minimal number of \(\partial F \cap \text{meridian} \)

Proposition ⇒ Theorem:

Given a non-ori spanning surface \(F \) attaining \(\gamma(K) \).

If \(F \) is essential, Prop ⇒ Thm , directly.

Otherwise, by boundary-compression, \(F \Rightarrow \) essential surface \(F' \) with smaller \(-\chi \).

Then, Prop ⇒ Thm , directly again. \(\square \)
Key to prove Proposition:

⇒ Hatcher - Oertel’s Algorithm

A. Hatcher and U. Oertel,
Boundary slopes for Montesinos knots,

They gave an Algorithm to list up
all boundary slopes for a given Montesinos knot.
Any essential surface F for K corresponds to a set of edgepaths in the left diagram.

We call such a set of edgepaths the edgepath system corresponding to F.
Remark:

Edgepath system \Rightarrow properly embedded surface, called candidate surface.
Remark:
Edgepath system \Rightarrow properly embedded surface, called candidate surface.

In general, candidate surfaces can be inessential, but we show Ineq.(1) for all candidate surfaces.
Remark:
Edgepath system \Rightarrow properly embedded surface, called candidate surface.

In general, candidate surfaces can be inessential, but we show Ineq.(1) for all candidate surfaces.

For candidate surfaces, \exists formula of $\frac{-\chi}{\#s}$
(Implicitly, in H-O. Also see Dunfield’s program)
Candidate surf. are classified into type I, II, or III.
Candidate surf. are classified into type I, II, or III

For type II and III;
it is easy to check Ineq. (1) holds.
Candidate surf. are classified into type I, II, or III

For type II and III;
it is easy to check Ineq.(1) holds.

For type I;
we can (easily) check Ineq.(1) holds except for the following special cases:
$P(-2, 3, 3), P(-2, 3, 5), P(3, 3, n), P(3, 5, 5)$
These cases can be checked individually.
Formula of χ_s for type I surface

$$\chi_s(\Gamma) = \sum_{i=1}^{n} \left\{ \begin{array}{ll} 0 & \text{(if } \Gamma_i \text{ is constant)} \\ |\Gamma_i| & \text{(otherwise)} \end{array} \right\} + n_{\text{const}} - n + \left(n - 2 - \sum_{\Gamma_i \text{ is Constant Edgepaths}} \frac{1}{q_i} \right) \frac{1}{1 - u}.$$