Lens spaces which are unobtainable by surgery on knots

Toshio SAITO
(Osaka University)

joint work with Kazuhiro Ichihara
(Osaka Sangyo University)
Lens spaces

Lens space $L(p, q)$: the 3-manifold obtained by p/q-surgery on the trivial knot in S^3.
Problem

Decide the lens spaces obtainable by surgery on non-trivial knots in S^3.
Known results

- (Moser)
 M : obtained by p/q-surgery on a (r, s)-torus knot. M is a lens space $\Rightarrow M = L(|p|, qs^2)$.

- (Bleiler-Litherland, Wang, Wu)
 M : obtained by surgery on a satellite knot K. M is a lens space $\Rightarrow \begin{cases} K : \text{the (}2pq \pm 1, 2\text{)-cable} \\
M = L(4pq \pm 1, 4q^2). \end{cases}$
• (Hirasawa-Shimokawa)
 $L(2p, 1)$ is unobtainable by surgery on strongly invertible knots.

• (Goda-Teragaito)
 Lens spaces are unobtainable by surgery on genus one hyperbolic knots.

• (Kronheimer-Mrowka-Ozsváth-Szabó)
 $L(p, 1)$ is unobtainable by p-surgery on knots.
Gordon’s conjecture

\(M \) : obtained by non-trivial surgery on a non-trivial knot.

\(M \) is a lens space \(\Rightarrow \) \(M \) is obtained by Berge’s surgery on a doubly primitive knot.
Doubly primitive knots

$(V_1, V_2; S)$: a genus two Heegaard splitting of S^3.

K : a simple loop on S.

K is a **doubly primitive knot** if K represents a free generator of both $\pi_1(V_1)$ and $\pi_1(V_2)$.
‘Conjecture’ (Ichihara-Teragaito)

Lens spaces containing Klein bottles are unobtainable by surgery on non-torus knots.
‘Conjecture’ (Ichihara-Teragaito)

Lens spaces containing Klein bottles are unobtainable by surgery on non-torus knots.

Theorem

Lens spaces containing Klein bottles are unobtainable by Berge’s surgery on non-torus doubly primitive knots.
Dual knots

K: a knot in a 3-manifold N.

$N' := E(K; N) \cup V$, where V is a filling solid torus.

K^*: a core loop of V.

Then K^* is the dual knot of K.
Dual knots

\(K \): a knot in a 3-manifold \(N \).

\(N' := E(K; N) \cup V \), where \(V \) is a filling solid torus.

\(K^* \): a core loop of \(V \).

Then \(K^* \) is the **dual knot** of \(K \).

Theorem (Berge)

\(K \): a doubly primitive knot.

\[S^3 \xrightarrow{\text{Berge's surgery}} L(p, q) \]

\[\cup \]

\[K \xrightarrow{\text{dual}} K^* \]

\[\cup \]
Dual knots

\(K \): a knot in a 3-manifold \(N \).
\(N' := E(K; N) \cup V \), where \(V \) is a filling solid torus.
\(K^* \): a core loop of \(V \).

Then \(K^* \) is the dual knot of \(K \).

Theorem (Berge)

\(K \): a doubly primitive knot.

\[
\begin{align*}
S^3 & \xrightarrow{\text{Berge's surgery}} L(p, q) \\
\cup & \\
K & \xleftarrow{\text{}} K^* = K(L(p, q); u)
\end{align*}
\]
$K(L(p, q); u)$
$K(L(p, q); u)$
\(t^u_i \): a simple arc in \(D_i \) joining \(P_0 \) to \(P_u \).
t_{i}^{u}: a simple arc in D_{i} joining P_{0} to P_{u}.
t_i^u : a simple arc in D_i joining P_0 to P_u.
t_i^u: a simple arc in D_i joining P_0 to P_u.

$K(L(p, q); u) := t_1^u \cup t_2^u$
Basic sequences

For positive coprime integers p and q,
$\{qj \pmod{p}\}_{j=1}^{p}$ is called a basic sequence.
Observation

$L(p, 2)$ is unobtainable by Berge’s surgery on non-torus doubly primitive knots.
Observation

$L(p, 2)$ is unobtainable by Berge’s surgery on non-torus doubly primitive knots.

K: a doubly primitive knot.

\[
S^3 \cup K \xrightarrow{\text{Berge's surgery}} L(p, 2) \cup K^* = K(L(p, 2); u)
\]
Observation

$L(p, 2)$ is unobtainable by Berge’s surgery on non-torus doubly primitive knots.

\[K: \text{a doubly primitive knot.} \]

\[S^3 \cup K \xrightarrow{\text{Berge’s surgery}} L(p, 2) \downarrow \cup K^* = K(L(p, 2); u) \]

\[\{2j \pmod{p}\}_{j=1}^p : 2, 4, \ldots, p-1, 1, 3, \ldots, p-2, 0 \]
Case 1. $u \equiv 0 \pmod{2}$.

$$\{2j \pmod{p}\}_{j=1}^p : 2, \ldots, u, \ldots, p - 1, 1, \ldots, p - 2, 0$$
Case 1. $u \equiv 0 \pmod{2}$.
\[
\{2j \pmod{p}\}_{j=1}^{p} : 2, \ldots, u, \ldots, p - 1, 1, \ldots, p - 2, 0
\]
Case 2. \(u \equiv 1 \pmod{2} \).
\[
\left\{ 2j \pmod{p} \right\}_{j=1}^{p} : 2, \ldots, p-1, 1, \ldots, u, \ldots, p-2, 0
\]
Case 2. $u \equiv 1 \pmod{2}$.

$\{2j \pmod{p}\}_{j=1}^{p} : 2, \ldots, p-1, 1, \ldots, u, \ldots, p-2, 0$
$K(L(p, q); u)$ with S^3-surgery

There is an algorithm to determine whether a given lens space is obtainable by Berge’s surgery on a doubly primitive knot.
$K(L(p, q); u)$ with S^3-surgery

There is an algorithm to determine whether a given lens space is obtainable by Berge’s surgery on a doubly primitive knot.

Step 1 Consider a 2-bridge link $S(p, q)$.
Step 1 Consider a 2-bridge link $S(p, q)$.

Step 2 Attach a band to $S(p, q)$ as follows.
Step 1 Consider a 2-bridge link $S(p, q)$.

Step 2 Attach a band to $S(p, q)$ as follows.

$$=: \mathcal{K}_0$$
Step 1 Consider a 2-bridge link $S(p, q)$.

Step 2 Attach a band to $S(p, q)$ as follows.

\[
=: \mathcal{K}_1
\]
Step 1 Consider a 2-bridge link $S(p, q)$.

Step 2 Attach a band to $S(p, q)$ as follows.

Step 3 Check whether \mathcal{K}_0 or \mathcal{K}_1 is a trivial knot.
Step 1 Consider a 2-bridge link $S(p, q)$.

Step 2 Attach a band to $S(p, q)$ as follows.

Step 3 Check whether \mathcal{K}_0 or \mathcal{K}_1 is a trivial knot.

Conclusion

$K(L(p, q); u)$ admits integral S^3-surgery

$\iff \mathcal{K}_0$ or \mathcal{K}_1 is a trivial knot.