
L­space surgery and twisting operation

KIMIHIKO MOTEGI

A knot in the 3–sphere is called an L­space knot if it admits a nontrivial Dehn
surgery yielding an L­space, i.e. a rational homology 3–sphere with the smallest
possible Heegaard Floer homology. Given a knot K , take an unknotted circle c
and twist K n times along c to obtain a twist family {Kn} . We give a sufficient
condition for {Kn} to contain infinitely many L­space knots. As an application
we show that for each torus knot and each hyperbolic Berge knot K , we can take
c so that the twist family {Kn} contains infinitely many hyperbolic L­space knots.
We also demonstrate that there is a twist family of hyperbolic L­space knots each
member of which has tunnel number greater than one.

57M25, 57M27; 57N10

1 Introduction

Heegaard Floer theory (with Z/2Z coefficients) associates a group ĤF(M, t) to a
closed, orientable spinc 3–manifold (M, t). The direct sum of ĤF(M, t) for all spinc

structures is denoted by ĤF(M). A rational homology 3–sphere M is called an L­space
if ĤF(M, t) is isomorphic to Z/2Z for all spinc structure t ∈ Spinc(M). Equivalently,
the dimension dimZ/2ZĤF(M) is equal to the order |H1(M;Z)|. A knot K in the 3–
sphere S3 is called an L­space knot if the result K(r) of r–surgery on K is an L­space
for some non­zero integer r , and the pair (K, r) is called an L­space surgery. The class
of L­spaces includes lens spaces (except S2 × S1 ), and more generally, 3–manifolds
with elliptic geometry [47, Proposition 2.3]. Since the trivial knot, nontrivial torus
knots and Berge knots [6] admit nontrivial surgeries yielding lens spaces, these are
fundamental examples of L­space knots. For the mirror image K∗ of K , K∗(−r) is
orientation reversingly homeomorphic to K(r). So if K(r) is an L­space, then K∗(−r)
is also an L­space [47, p.1288]. Hence if K is an L­space knot, then so is K∗ .

Let K be a nontrivial L­space knot with a positive L­space surgery, then Ozsváth and
Szabó [48, Proposition 9.6] ([25, Lemma 2.13]) prove that r–surgery on K results in an
L­space if and only if r ≥ 2g(K)− 1, where g(K) denotes the genus of K . This result,
together with Thurston’s hyperbolic Dehn surgery theorem [51, 52, 4, 49, 7], shows
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that each hyperbolic L­space knot, say a hyperbolic Berge knot, produces infinitely
many hyperbolic L­spaces by Dehn surgery.

On the other hand, there are some strong constraints for L­space knots:

• The non­zero coefficients of the Alexander polynomial of an L­space knot are ±1
and alternate in sign [47, Corollary 1.3].

• An L­space knot is fibered [43, Corollary 1.2]([44]); see also [19, 29].

• An L­space knot is prime [31, Theorem 1.2].

Note that these conditions are not sufficient. For instance, 10132 satisfies the above
conditions, but it is not an L­space knot; see [47].

As shown in [25, 26], some satellite operations keep the property of being L­space
knots. In the present article, we consider if some suitably chosen twistings also keep
the property of being L­space knots. Given a knot K , take an unknotted circle c
which bounds a disk intersecting K at least twice. Then performing n–twist, i.e.
(−1/n)–surgery along c, we obtain another knot Kn . Then our question is formulated
as:

Question 1.1 Which knots K admit an unknotted circle c such that n–twist along c
converts K into an L­space knot Kn for infinitely many integers n? Furthermore, if K
has such a circle c, which circles enjoy the desired property?

Example 1.2 Let K be a pretzel knot P(−2, 3, 7) and take an unknotted circle c as in
Figure 1.1. Then following Ozsváth and Szabó [47] Kn is an L­space knot if n ≥ −3
and thus the twist family {Kn} contains infinity many L­space knots. Note that this
family, together with a twist family {T2n+1,2}, comprise all Montesinos L­space knots;
see [33] and [3].

In this example, it turns out that c becomes a Seifert fiber in the lens space K(19) (cf.
Example 4.3). We employed such a circle for relating Seifert fibered surgeries in [13].
A pair (K,m) of a knot K in S3 and an integer m is a Seifert surgery if K(m) has a
Seifert fibration; we allow the fibration to be degenerate, i.e. it contains an exceptional
fiber of index 0 as a degenerate fiber. See [13, 2.1] for details. The definition below
enables us to say that c is a seiferter for the Seifert (lens space) surgery (K, 19).

Definition 1.3 (seiferter [13]) Let (K,m) be a Seifert surgery. A knot c in S3−N(K)
is called a seiferter for (K,m) if c satisfies the following:
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c

K = P(-2, 3, 7)

Figure 1.1: A knot Kn obtained by n–twist along c is an L­space knot if n ≥ −3.

• c is a trivial knot in S3 .

• c becomes a fiber in a Seifert fibration of K(m).

As remarked in [13, Convention 2.15], if c bounds a disk in S3 − K , then we do
not regard c as a seiferter. Thus for any seiferter c for (K,m), S3 − intN(K ∪ c) is
irreducible.

Let (K,m) be a Seifert surgery with a seiferter c. There are two cases according as c
becomes a fiber in a non­degenerate Seifert fibration of K(m) or c becomes a fiber in
a degenerate Seifert fibration of K(m). In the former case, for homological reasons,
the base surface is the 2–sphere S2 or the projective plane RP2 . Suppose that c is a
fiber in a non­degenerate Seifert fibration of K(m) over the 2–sphere S2 . Then in the
following we assume that K(m) contains at most three exceptional fibers and if there
are three exceptional fibers, then c is an exceptional fiber. We call such a seiferter a
seiferter for a small Seifert fibered surgery (K,m). To be precise, the images of K and
m after n–twist along c should be denoted by Kc,n and mc,n , but for simplicity, we
abbreviate them to Kn and mn respectively as long as there is no confusion.

Theorem 1.4 Let c be a seiferter for a small Seifert fibered surgery (K,m). Then
(Kn,mn) is an L­space surgery for an infinite interval of integers n if and only if the
result of (m, 0)–surgery on K ∪ c is an L­space.

In remaining cases, it turns out that every seiferter enjoys the desired property in
Question 1.1.

Theorem 1.5 Let c be a seiferter for (K,m) which become a fiber in a Seifert fibration
of K(m) over RP2 . Then (Kn,mn) is an L­space surgery for all but at most one integer
n0 with (Kn0 ,mn0) = (O, 0). Hence Kn is an L­space knot for all integers n.
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Let us turn to the case where c is a (degenerate or non­degenerate) fiber in a degen­
erate Seifert fibration of K(m). Recall from [13, Proposition 2.8] that if K(m) has
a degenerate Seifert fibration, then it is a lens space or a connected sum of two lens
spaces such that each summand is neither S3 nor S2 × S1 . The latter 3–manifold will
be simply referred to as a connected sum of two lens spaces, which is an L­space [50,
8.1(5)] ([45]).

Theorem 1.6 Let c be a seiferter for (K,m) which becomes a (degenerate or non­
degenerate) fiber in a degenerate Seifert fibration of K(m).

(1) If K(m) is a lens space, then (Kn,mn) is an L­space surgery, hence Kn is an
L­space knot, for all but at most one integer n.

(2) If K(m) is a connected sum of two lens spaces, then (Kn,mn) is an L­space
surgery, hence Kn is an L­space knot, for any integer n ≥ −1 or n ≤ 1.

Following Greene [23, Theorem 1.5], if K(m) is a connected sum of two lens spaces,
then K is a torus knot Tp,q or a cable of a torus knot Cp,q(Tr,s), where p = qrs ± 1.
We may assume p, q ≥ 2 by taking the mirror image if necessary. The next theorem is
a refinement of Theorem 1.6(2).

Theorem 1.7 Let c be a seiferter for (K,m) = (Tp,q, pq) or (Cp,q(Tr,s), pq) (p =

qrs ± 1). We assume p, q ≥ 2. Then a knot Kn obtained from K by n–twist along c
is an L­space knot for any n ≥ −1. Furthermore, if the linking number l between c
and K satisfies l2 ≥ 2pq, then Kn is an L­space knot for all integers n.

In the above theorem, even when ℓ2 < 2pq, Kn (n < −1) may be an L­space knot;
see [41].

In Sections 5, 6 and 7 we will exploit seiferter technology developed in [13, 11, 12] to
give a partial answer to Question 1.1. Even though Theorem 1.7 treats a special kind
of Seifert surgeries, it offers many applications. In particular, Theorem 1.7 enables us
to give new families of L­space twisted torus knots. See Section 5 for the definition of
twisted torus knots K(p, q; r, n) introduced by Dean [10].

Theorem 1.8 (L­space twisted torus knots) (1) The following twisted torus knots
are L­space knots for all integers n.

• K(p, q; p + q, n) with p, q ≥ 2
• K(3p + 1, 2p + 1; 4p + 1, n) with p > 0
• K(3p + 2, 2p + 1; 4p + 3, n) with p > 0
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(2) The following twisted torus knots are L­space knots for any n ≥ −1.

• K(p, q; p − q, n) with p, q ≥ 2

• K(2p + 3, 2p + 1; 2p + 2, n) with p > 0

Theorem 1.8 has the following corollary, which asserts that every nontrivial torus knot
admits twistings desired in Question 1.1.

Corollary 1.9 For any nontrivial torus knot Tp,q , we can take an unknotted circle
c so that n–twist along c converts Tp,q into an L­space knot Kn for all integers n.
Furthermore, {Kn}|n|>3 is a set of mutually distinct hyperbolic L­space knots.

For the simplest L­space knot, i.e. the trivial knot O, we can strengthen Corollary 1.9
as follows.

Theorem 1.10 (L­space twisted unknots) For the trivial knot O, we can take
infinitely many unknotted circles c so that n–twist along c changes O into a nontrivial
L­space knot Kc,n for any non­zero integer n. Furthermore, {Kc,n}|n|>1 is a set of
mutually distinct hyperbolic L­space knots.

Using a relationship between Berge’s lens space surgeries and surgeries yielding a
connected sum of two lens spaces, we can prove:

Theorem 1.11 (L­space twisted Berge knots) For any hyperbolic Berge knot K ,
there is an unknotted circle c such that n–twist along c converts K into a hyperbolic
L­space knot Kn for infinitely many integers n.

In Section 8 we consider the tunnel number of L­space knots. Recall that the tunnel
number of a knot K in S3 is the minimum number of mutually disjoint, embedded
arcs connecting K such that the exterior of the resulting 1–complex is a handlebody.
Hedden’s cabling construction [25], together with [40], enables us to obtain an L­space
knot with tunnel number greater than 1. Actually Baker and Moore [3] have shown
that for any integer N , there is an L­space knot with tunnel number greater than N .
However, L­space knots with tunnel number greater than one constructed above are all
satellite (non­hyperbolic) knots and they ask:

Question 1.12 ([3]) Is there a non­satellite, L­space knot with tunnel number greater
than one?



6 Kimihiko Motegi

Examining knots with Seifert surgeries which do not arise from primitive/Seifert­
fibered construction given by [16], we prove the following which answers the question
in the positive.

Theorem 1.13 There exist infinitely many hyperbolic L­space knots with tunnel
number greater than one.

Each knot in the theorem is obtained from a trefoil knot T3,2 by alternate twisting along
two seiferters for the lens space surgery (T3,2, 7).

In Section 9 we will discuss further questions on relationships between L­space knots
and twisting operation.
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Japan and Joint Research Grant of Institute of Natural Sciences at Nihon University
for 2014.

2 Seifert fibered L­spaces

Let M be a rational homology 3–sphere which is a Seifert fiber space. For homological
reasons, the base surface of M is either S2 or RP2 . In the latter case, Boyer, Gordon
and Watson [8, Proposition 5] prove that M is an L­space. Now assume that the base
surface of M is S2 . Following Ozsváth and Szabó [46, Theorem 1.4] if M is an L­space,
then it carries no taut foliation, in particular, it carries no horizontal (i.e. transverse)
foliation. Furthermore, Lisca and Stipsicz [34, Theorem 1.1] prove that the converse
also does hold. Therefore a Seifert fibered rational homology 3–sphere M over S2 is
an L­space if and only if it does not admit a horizontal foliation. Note that if M does
not carry a horizontal foliation, then it is necessarily a rational homology 3–sphere. In
fact, if |H1(M;Z)| = ∞, then M is a surface bundle over the circle [27, VI.34], [24],
and hence it has a horizontal foliation. On the other hand, Eisenbud­Hirsh­Neumann
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[14], Jankins­Neumann [28] and Naimi [42] gave a necessary and sufficient conditions
for a Seifert fibered 3­manifold to carry a horizontal foliation. Combining them we
have Theorem 2.1 below. See also [9, Theorem 5.4]; we follow the convention of
Seifert invariants in [9, Section 4].

For ordered triples (a1, a2, a3) and (b1, b2, b3), we write (a1, a2, a3) < (b1, b2, b3)
(resp. (a1, a2, a3) ≤ (b1, b2, b3)) if ai < bi (resp. ai ≤ bi ) for 1 ≤ i ≤ 3, and denote
by (a1, a2, a3)∗ the ordered triple (σ(a1), σ(a2), σ(a3)), where σ is a permutation such
that σ(a1) ≤ σ(a2) ≤ σ(a3).

Theorem 2.1 ([46, 34, 14, 28, 42]) A Seifert fiber space S2(b, r1, r2, r3) (b ∈ Z, 0 <

ri < 1) is an L­space if and only if one of the following holds.

(1) b ≥ 0 or b ≤ −3.

(2) b = −1 and there are no relatively prime integers a, k such that 0 < a ≤ k/2
and (r1, r2, r3)∗ < (1/k, a/k, (k − a)/k).

(3) b = −2 and there are no relatively prime integers 0 < a ≤ k/2 such that
(1 − r1, 1 − r2, 1 − r3)∗ < (1/k, a/k, (k − a)/k).

For our purpose, we consider the following problem:

Problem 2.2 Given an integer b and rational numbers 0 < r1 ≤ r2 < 1, describe
rational numbers −1 ≤ r ≤ 1 for which S2(b, r1, r2, r) is an L­space.

We begin by observing:

Lemma 2.3 Assume that 0 < r1 ≤ r2 < 1.

(1) If b ≥ 0 or b ≤ −3, then S2(b, r1, r2, r) is an L­space for any 0 < r < 1.

(2) If r1 + r2 ≥ 1, then S2(−1, r1, r2, r) is an L­space for any 0 < r < 1.

(3) If r1 + r2 ≤ 1, then S2(−2, r1, r2, r) is an L­space for any 0 < r < 1.

Proof of Lemma 2.3. The first assertion is nothing but Theorem 2.1(1).

Suppose for a contradiction that S2(−1, r1, r2, r) is not an L­space for some 0 < r < 1.
Then, by Theorem 2.1(2) we can take relatively prime integers a, k (0 < a ≤ k/2)
so that (r1, r2, r)∗ < (1/k, a/k, (k − a)/k). This then implies that r1 < a/k and
r2 < (k − a)/k . Hence r1 + r2 < a/k + (k − a)/k = 1, a contradiction. This proves
(2).
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To prove (3), assume for a contradiction that S2(−2, r1, r2, r) is not an L­space for
some 0 < r < 1. Then, by Theorem 2.1(3) we have relatively prime integers a, k
(0 < a ≤ k/2) such that (1− r1, 1− r2, 1− r)∗ < (1/k, a/k, (k− a)/k). Thus we have
(1− r2) < a/k and (1− r1) < (k − a)/k . Thus (1− r1)+ (1− r2) < 1, which implies
r1 + r2 > 1, contradicting the assumption. □(Lemma 2.3)

Now let us prove the following, which gives an answer to Problem 2.2.

Proposition 2.4 Assume that 0 < r1 ≤ r2 < 1.

(1) If b ≤ −3 or b ≥ 1, then S2(b, r1, r2, r) is an L­space for any −1 ≤ r ≤ 1.

(2) If b = −2, then there exists ε > 0 such that S2(−2, r1, r2, r) is an L­space
for any −1 ≤ r ≤ ε. Furthermore, if r1 + r2 ≤ 1, then S2(−2, r1, r2, r) is an
L­space if −1 ≤ r < 1.

(3) Suppose that b = −1.

(i) If r1 + r2 ≥ 1, then S2(−1, r1, r2, r) is an L­space for any 0 < r ≤ 1.
(ii) If r1 + r2 ≤ 1, then S2(−1, r1, r2, r) is an L­space for any −1 ≤ r < 0.

(4) If b = 0, then there exists ε > 0 such that S2(r1, r2, r) is an L­space for any
−ε ≤ r ≤ 1. Furthermore, if r1 + r2 ≥ 1, then S2(r1, r2, r) is an L­space if
−1 < r ≤ 1.

Proof of Proposition 2.4. If r = 0,±1, then S2(b, r1, r2, r) is a lens space.

Claim 2.5 Suppose that r is an integer. Then the lens space S2(b, r1, r2, r) is S2 × S1

if and only if b + r = −1 and r1 + r2 = 1. In particular, if b + r ̸= −1, then
S2(b, r1, r2, r) is an L­space.

Proof of Claim 2.5. Recall that H1(S2(a/b, c/d)) ∼= Z (b, d ≥ 1) if and only if
ad + bc = 0, i.e. a/b + c/d = 0. Thus S2(b, r1, r2, r) is S2 × S1 if and only if
b+ r1 + r2 + r = 0, i.e. r1 + r2 = −b− r ∈ Z. Since 0 < ri < 1, we have r1 + r2 = 1
and b + r = −1. □(Claim 2.5)

We divide into two cases according as 0 ≤ r ≤ 1 or −1 ≤ r ≤ 0.

Case I. 0 ≤ r ≤ 1.

(i) If b ≥ 0 or b ≤ −3, then S2(b, r1, r2, r) is an L­space for any 0 < r < 1 by
Lemma 2.3(1). Since b + r ̸= −1 for r = 0, 1, by Claim 2.5 S2(b, r1, r2, r) is an
L­space for r = 0, 1. Hence S2(b, r1, r2, r) is an L­space for any 0 ≤ r ≤ 1.
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(ii) Suppose that b = −1. By Lemma 2.3(2), if r1 + r2 ≥ 1, then S2(−1, r1, r2, r)
is an L­space for any 0 < r < 1. Since S2(−1, r1, r2, 1) is an L­space (Claim 2.5),
S2(−1, r1, r2, r) is an L­space for any 0 < r ≤ 1.

(iii) Assume b = −2. Let us assume 0 < r ≤ r1 so that 0 < 1 − r2 ≤ 1 −
r1 ≤ 1 − r < 1. Set A = {(k − a)/k | 1 − r2 < 1/k, 1 − r1 < a/k, 0 < a ≤
k/2, a and k are relatively prime integers}. If A = ∅, i.e. there are no relatively
prime integers a, k (0 < a ≤ k/2) such that 1 − r2 < 1/k, 1 − r1 < a/k , then
S2(−2, r1, r2, r) is an L­space for any 0 < r ≤ r1 by Theorem 2.1. Suppose that
A ̸= ∅. Since there are only finitely many integers k satisfying 1 − r2 < 1/k , A
consists of only finitely many elements. Let r0 be the maximal element in A. If
0 < r ≤ 1 − r0 , then r0 ≤ 1 − r < 1, and hence there are no relatively prime
integers a, k (0 < a ≤ k/2) satisfying (1 − r2, 1 − r1, 1 − r) < (1/k, a/k, (k − a)/k).
Put ε = min{r1, 1 − r0}. Then S2(−2, r1, r2, r) is an L­space for any 0 < r ≤ ε

by Theorem 2.1. Since S2(−2, r1, r2, 0) is an L­space (Claim 2.5), S2(−2, r1, r2, r)
is an L­space for any 0 ≤ r ≤ ε. Furthermore, if we have the additional condition
r1 + r2 ≤ 1, then Lemma 2.3(3) improves the result so that S2(−2, r1, r2, r) is an
L­space for any 0 ≤ r < 1.

Case II. −1 ≤ r ≤ 0.

Note that S2(b, r1, r2, r) = S2(b − 1, r1, r2, r + 1).

(i) If b ≥ 1 or b ≤ −2 (i.e. b − 1 ≥ 0 or b − 1 ≤ −3), then S2(b, r1, r2, r) =

S2(b − 1, r1, r2, r + 1) is an L­space for any 0 < r + 1 < 1, i.e. −1 < r < 0 by
Lemma 2.3(1). Since b + r ̸= −1 for r = −1, 0, S2(b, r1, r2, r) is an L­space for
r = −1, 0 (Claim 2.5). Thus S2(b, r1, r2, r) is an L­space for any −1 ≤ r ≤ 0.

(ii) If b = 0 (i.e. b − 1 = −1), then S2(0, r1, r2, r) = S2(−1, r1, r2, r + 1). Let us
assume r2 − 1 ≤ r < 0 so that 0 < r1 ≤ r2 ≤ r + 1 < 1. Set A = {(k − a)/k | r1 <

1/k, r2 < a/k, 0 < a ≤ k/2, a and k are relatively prime integers}. If A = ∅,
then we can easily observe that for any r with r2 ≤ r + 1 < 1, S2(−1, r1, r2, r + 1)
is an L­space (Theorem 2.1). Hence for any r2 − 1 ≤ r < 0, S2(0, r1, r2, r) is an
L­space. Suppose that A ̸= ∅. Since A is a finite set, we take the maximal element
r0 in A. If r0 ≤ r + 1 < 1 (i.e. r0 − 1 ≤ r < 0), then there are no relatively prime
integers a, k (0 < a ≤ k/2) satisfying (r1, r2, r + 1) < (1/k, a/k, (k − a)/k). Put
ε = min{1 − r2, 1 − r0}. Then S2(0, r1, r2, r) = S2(−1, r1, r2, r + 1) is an L­space
for any −ε ≤ r < 0 (Theorem 2.1). Since S2(0, r1, r2, 0) = S2(r1, r2) is an L­space
(Claim 2.5), S2(0, r1, r2, r) is an L­space for any −ε ≤ r ≤ 0. Furthermore, if we
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have the additional condition r1 + r2 ≥ 1, then Lemma 2.3(2) improves the result so
that S2(r1, r2, r) = S2(−1, r1, r2, r + 1) is an L­space for any −1 < r ≤ 0.

(iii) If b = −1 (i.e. b−1 = −2), then S2(−1, r1, r2, r) = S2(−2, r1, r2, r+1). Assume
that r1 + r2 ≤ 1. Then Proposition 2.3(3), S2(−1, r1, r2, r) = S2(−2, r1, r2, r + 1) is
an L­space for any 0 < r + 1 < 1, i.e. −1 < r < 0. Since Claim 2.5 shows that
S2(−1, r1, r2,−1) is an L­space, S2(−1, r1, r2, r) is an L­space for any −1 ≤ r < 0.

Combining Cases I and II, we obtain the result described in the proposition.

□(Proposition 2.4)

The next proposition shows that if S2(b, r1, r2, r∞) is an L­space for some rational
number 0 < r∞ < 1, then we can find r near r∞ so that S2(b, r1, r2, r) is an L­space.

Proposition 2.6 Suppose that 0 < r1 ≤ r2 < 1 and S2(b, r1, r2, r∞) is an L­space for
some rational number 0 < r∞ < 1.

(1) If b = −1, then S2(−1, r1, r2, r) is an L­space for any r∞ ≤ r ≤ 1.

(2) If b = −2, then S2(−2, r1, r2, r) is an L­space for any −1 ≤ r ≤ r∞ .

Proof of Proposition 2.6. (1) Assume for a contradiction that S2(−1, r1, r2, r) is not
an L­space for some r satisfying r∞ ≤ r < 1. By Theorem 2.1 we have relatively
prime integers a, k (0 < a ≤ k/2) such that (r1, r2, r)∗ < (1/k, a/k, (k − a)/k).
Since r∞ ≤ r < 1, (r1, r2, r∞)∗ ≤ (r1, r2, r)∗ < (1/k, a/k, (k − a)/k). Hence
Theorem 2.1 shows that S2(−1, r1, r2, r∞) is not an L­space, a contradiction. Since
S2(−1, r1, r2, 1) = S2(r1, r2) is an L­space (Claim 2.5), S2(−1, r1, r2, r) is an L­space
for any r∞ ≤ r ≤ 1.

(2) Next assume for a contradiction that S2(−2, r1, r2, r) is not an L­space for some
r satisfying 0 < r ≤ r∞ . Then following Theorem 2.1 we have (1 − r1, 1 − r2, 1 −
r)∗ < (1/k, a/k, (k − a)/k) for some relatively prime integers a, k (0 < a ≤ k/2).
Since r ≤ r∞ , we have 1 − r∞ ≤ 1 − r , and hence (1 − r1, 1 − r2, 1 − r∞)∗ ≤
(1 − r1, 1 − r2, 1 − r)∗ < (1/k, a/k, (k − a)/k). This means S2(−2, r1, r2, r∞) is not
an L­space, contradicting the assumption. Thus S2(−2, r1, r2, r) is an L­space for any
0 < r ≤ r∞ . Furthermore, as shown in Proposition 2.4(2), S2(−2, r1, r2, r) is an
L­space if −1 ≤ r ≤ ε for some ε > 0, so S2(−2, r1, r2, r) is an L­space for any
−1 ≤ r ≤ r∞ . □(Proposition 2.6)

We close this section with the following result which is the complement of Proposi­
tion 2.6.
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Proposition 2.7 Suppose that 0 < r1 ≤ r2 < 1 and S2(b, r1, r2, r∞) is not an L­space
for some rational number 0 < r∞ < 1.

(1) If b = −1, then there exists ε > 0 such that S2(−1, r1, r2, r) is not an L­space
for any 0 < r < r∞ + ε.

(2) If b = −2, then there exists ε > 0 such that then S2(−2, r1, r2, r) is an L­space
for any r∞ − ε < r < 1.

Proof of Proposition 2.7. (1) Since S2(−1, r1, r2, r∞) is not an L­space, Theo­
rem 2.1 shows that there are relatively prime integers a, k (0 < a ≤ k/2) such
that (r1, r2, r∞)∗ < (1/k, a/k, (k− a)/k). Then clearly there exists ε > 0 such that for
any 0 < r < r∞+ε, we have (r1, r2, r)∗ < (1/k, a/k, (k−a)/k). Thus by Theorem 2.1
again S2(−1, r1, r2, r) is not an L­space for any 0 < r < r∞ + ε.

(2) Since S2(−2, r1, r2, r∞) is not an L­space, by Theorem 2.1 we have relatively prime
integers a, k (0 < a ≤ k/2) such that (1− r1, 1− r2, 1− r∞)∗ < (1/k, a/k, (k−a)/k).
Hence there exists ε > 0 such that if 0 < 1−r < 1−r∞+ε, i.e. r∞−ε < r < 1, then
(1−r1, 1−r2, 1−r)∗ < (1/k, a/k, (k−a)/k). Following Theorem 2.1 S2(−2, r1, r2, r)
is not an L­space for any r∞ − ε < r < 1. □(Proposition 2.7)

3 L­space surgeries and twisting along seiferters I – non­
degenerate case

The goal in this section is to prove Theorems 1.4 and 1.5.

Let c be a seiferter for a small Seifert fibered surgery (K,m). The 3–manifold obtained
by (m, 0)–surgery on K ∪ c is denoted by Mc(K,m).

Proof of Theorem 1.4. First we prove the “if" part of Theorem 1.4. If K(m) is a lens
space and c is a core of the genus one Heegaard splitting, then Kn(mn) is a lens space
for any integer n. Thus (Kn,mn) is an L­space surgery for all n ∈ Z except when
Kn(mn) ∼= S2 × S1 , i.e. Kn is the trivial knot and mn = 0 [17, Theorem 8.1]. Since
(Kn,mn) = (Kn′ ,mn′) if and only if n = n′ [13, Theorem 5.1], there is at most one
integer n such that (Kn,mn) = (O, 0). Henceforth, in the case where K(m) is a lens
space, we assume that K(m) has a Seifert fibration over S2 with two exceptional fibers
t1 , t2 , and c becomes a regular fiber in this Seifert fibration.
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Let E be K(m) − intN(c) with a fibered tubular neighborhood of the union of two
exceptional fibers t1, t2 and one regular fiber t0 removed. Then E is a product circle
bundle over the four times punctured sphere. Take a cross section of E such that
K(m) is expressed as S2(b, r1, r2, r3), where the Seifert invariant of t0 is b ∈ Z, that
of ti is 0 < ri < 1 (i = 1, 2), and that of c is 0 ≤ r3 < 1. Without loss of
generality, we may assume r1 ≤ r2 . Let s be the boundary curve on ∂N(c) of the
cross section so that [s] · [t] = 1 for a regular fiber t ⊂ ∂N(c). Let (µ, λ) be a
preferred meridian­longitude pair of c ⊂ S3 . Then [µ] = α3[s] + β3[t] ∈ H1(∂N(c))
and [λ] = −α[s]− β[t] ∈ H1(∂N(c)) for some integers α3, β3, α and β which satisfy
α3 > 0 and αβ3 − βα3 = 1, where r3 = β3/α3 . Now let us write rc = β/α , which
is the slope of the preferred longitude λ of c ⊂ S3 with respect to (s, t)–basis.

Claim 3.1 Mc(K,m) is a (possibly degenerate) Seifert fiber space S2(b, r1, r2, rc); if
rc = −1/0, then it is a connected sum of two lens spaces.

Proof of Claim 3.1. Mc(K,m) is regarded as a 3–manifold obtained from K(m) by
performing λ–surgery along the fiber c ⊂ K(m). Since [λ] = −α[s]−β[t], Mc(K,m)
is a (possibly degenerate) Seifert fiber space S2(b, r1, r2, rc). If α = 0, i.e. rc = −1/0,
then Mc(K,m) has a degenerate Seifert fibration and it is a connected sum of two lens
spaces. □(Claim 3.1)

Recall that (Kn,mn) is a Seifert surgery obtained from (K,m) by twisting n times along
c. The image of c after the n–twist along c is also a seiferter for (Kn,mn) and denoted
by cn . We study how the Seifert invariant of K(m) behaves under the twisting. We
compute the Seifert invariant of cn in Kn(mn) under the same cross section on E .

Since we have (
[µ]
[λ]

)
=

(
α3 β3

−α −β

)(
[s]
[t]

)
,

it follows that

(
[s]
[t]

)
=

(
−β −β3

α α3

)(
[µ]
[λ]

)
.

Twisting n times along c is equivalent to performing −1/n–surgery on c. A preferred
meridian­longitude pair (µn, λn) of N(cn) ⊂ S3 satisfies [µn] = [µ] − n[λ] and
[λn] = [λ] in H1(∂N(cn)) = H1(∂N(c)).
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We thus have (
[s]
[t]

)
=

(
−β −nβ − β3

α nα+ α3

)(
[µn]
[λn]

)
,

and it follows that

(
[µn]
[λn]

)
=

(
nα+ α3 nβ + β3

−α −β

)(
[s]
[t]

)
.

Hence, the Seifert invariant of the fiber cn in Kn(mn) is (nβ + β3)/(nα + α3), and
Kn(mn) = S2(b, r1, r2, (nβ + β3)/(nα+ α3)).

Remark 3.2 Since (nβ + β3)/(nα + α3) converges to β/α when |n| tends to ∞,
Mc(K,m) can be regarded as the limit of Kn(mn) when |n| tends to ∞.

We divide into three cases: rc = −1/0, rc ∈ Z or rc ∈ Q\Z. Except for the last case,
we do not need the assumption that Mc(K,m) is an L­space.

Case 1. rc = β/α = −1/0.

Since α3 > 0 and αβ3 − βα3 = 1, we have α3 = 1, β = −1. Hence Kn(mn) is a
Seifert fiber space S2(b, r1, r2, (nβ+β3)/(nα+α3)) = S2(b, r1, r2,−n+β3), which is
a lens space for any n ∈ Z. Following Claim 2.5 S2(b, r1, r2,−n + β3) is an L­space
if n ̸= b + β3 + r1 + r2 . Thus (Kn,mn) is an L­space surgery for all n ∈ Z except at
most n = b + β3 + r1 + r2 .

Next suppose that rc = β/α ̸= −1/0. Then the Seifert invariant of cn is

f (n) =
nβ + β3

nα+ α3
=

β

α
+

β3 − β
αα3

nα+ α3
= rc +

β3 − rcα3

nα+ α3
.

Since αβ3 − βα3 = α(β3 − rcα3) = 1, α and β3 − rcα3 have the same sign.

Case 2. rc ∈ Z. We put rc = p. Then we can write S2(b, r1, r2, rc) = S2(b+ p, r1, r2).

(i) If b ≤ −p−3 or b ≥ −p+1, then Proposition 2.4(1) shows that S2(b, r1, r2, f (n)) =
S2(b+p, r1, r2, f (n)−p) is an L­space if −1 ≤ f (n)−p ≤ 1, i.e. p−1 ≤ f (n) ≤ p+1.
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x

r  = pc

p+1

p-1

y =f(x)

x x1 2 x

r  =pc

p+e

p-1

y=f(x)

(i)                                                                  (ii)                                                                 (iii)

x x1 2 x

y=f(x)

x1

r  = pc

p+1

p-e

x2

Figure 3.1: f (x) = βx+β3
αx+α3

Hence (Kn,mn) is an L­space for all n but n ∈ (x1, x2), where f (x1) = p − 1 and
f (x2) = p + 1; see Figure 3.1(i).

(ii) If b = −p − 2, then it follows from Proposition 2.4(2), there is an ε > 0 such that
S2(b, r1, r2, f (n)) = S2(b + p, r1, r2, f (n) − p) = S2(−2, r1, r2, f (n) − p) is an L­space
if −1 ≤ f (n) − p ≤ ε. Hence (Kn,mn) is an L­space except for only finitely many
n ∈ (x1, x2), where f (x1) = p − 1, f (x2) = p + ε; see Figure 3.1(ii).

(iii) Suppose that b = −p−1. If r1+r2 ≥ 1 (resp. r1+r2 ≤ 1), then Proposition 2.4(3)
shows that S2(b, r1, r2, f (n)) = S2(b+p, r1, r2, f (n)−p) = S2(−1, r1, r2, f (n)−p) is an
L­space if 0 < f (n)−p ≤ 1 (resp. −1 ≤ f (n)−p < 0). Hence (Kn,mn) is an L­space
for any integer n ≥ x2 , where f (x2) = p + 1 (resp. n ≤ x1 , where f (x1) = p − 1), see
Figure 3.2.

x

r  = pc

p+1

y=f(x)

x2 x

r  = pc

p-1

y=f(x)

x1

r  + r   > 11 2 r  + r   < 11 2

Figure 3.2: f (x) = βx+β3
αx+α3

(iv) If b = −p, then Proposition 2.4(4) shows that S2(b, r1, r2, f (n)) = S2(b +

p, r1, r2, f (n) − p) = S2(r1, r2, f (n) − p) is an L­space if −ε ≤ f (n) − p ≤ 1, i.e.
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p − ε ≤ f (n) ≤ p + 1 for some ε > 0. Hence (Kn,mn) is an L­space for all n but
n ∈ (x1, x2), where f (x1) = p − ε and f (x2) = p + 1; see Figure 3.1(iii).

Case 3. rc ∈ Q \ Z and Mc(K,m) = S2(b, r1, r2, rc) is an L­space. We assume p <

rc < p+1 for some integer p. Then we have S2(b, r1, r2, rc) = S2(b+p, r1, r2, rc−p),
where 0 < rc − p < 1.

(i) If b ≤ −p−3 or b ≥ −p+1, then Proposition 2.4(1) shows that S2(b, r1, r2, f (n)) =
S2(b+p, r1, r2, f (n)−p) is an L­space if −1 ≤ f (n)−p ≤ 1, i.e. p−1 ≤ f (n) ≤ p+1.
Hence (Kn,mn) is an L­space for all n but n ∈ (x1, x2), where f (x1) = p − 1 and
f (x2) = p + 1; see Figure 3.3(i).

(ii) Suppose that b = −p − 1. Since S2(b, r1, r2, rc) = S2(b + p, r1, r2, rc − p) =

S2(−1, r1, r2, rc−p) is an L­space, by Proposition 2.6(1), S2(b, r1, r2, f (n)) = S2(−1, r1, r2, f (n)−
p) is an L­space if rc − p ≤ f (n) − p ≤ 1 (i.e. rc ≤ f (n) ≤ p + 1). Hence (Kn,mn)
is an L­space for any n ≥ x2 , where f (x2) = p + 1; see Figure 3.3(ii). (Furthermore,
if r1 + r2 ≥ 1, then by Proposition 2.4(3)(i), S2(−1, r1, r2, f (n) − p) is an L­space
provided 0 < f (n) − p ≤ 1, i.e. p < f (n) ≤ p + 1. Hence (Kn,mn) is an L­space
surgery for any integer n except for n ∈ [x1, x2), where f (x1) = p and f (x2) = p+1. )

x

rc

p+1

p

y=f(x)

x

rc

p+1

y=f(x)

x x1 2

(i)                                                                    (ii)

x2

p

p-1

x1

Figure 3.3: f (x) = βx+β3
αx+α3

(iii) Suppose that b = −p − 2. Since S2(b, r1, r2, rc) = S2(b + p, r1, r2, rc − p) =

S2(−2, r1, r2, rc − p) is an L­space, following Proposition 2.6(2), S2(b, r1, r2, f (n)) =
S2(−2, r1, r2, f (n)−p) is an L­space if −1 ≤ f (n)−p ≤ rc−p (i.e. p−1 ≤ f (n) ≤ rc ).
Hence (Kn,mn) is an L­space for any n ≤ x1 , where f (x1) = p − 1; see Figure 3.4(i).
(Furthermore, if r1+r2 ≤ 1, then Proposition 2.4(2) shows that S2(−2, r1, r2, f (n)−p)
is an L­space provided −1 ≤ f (n)− p < 1, i.e. p− 1 ≤ f (n) < p+1. Hence (Kn,mn)
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is an L­space surgery for any integer n except for n ∈ (x1, x2], where f (x1) = p − 1
and f (x2) = p + 1. )

(iv) If b = −p, then Proposition 2.4(4) shows that S2(b, r1, r2, f (n)) = S2(b +

p, r1, r2, f (n) − p) = S2(r1, r2, f (n) − p) is an L­space if −ε ≤ f (n) − p ≤ 1, i.e.
p − ε ≤ f (n) ≤ p + 1 for some ε > 0. Hence (Kn,mn) is an L­space for all n but
n ∈ (x1, x2), where f (x1) = p − ε and f (x2) = p + 1; see Figure 3.4(ii).

x

rc

p

y=f(x)

x1

p+1

x

rc

p+1

p

y=f(x)

x1

(i)                                                                    (ii)

x2

p-e

p-1

x2

Figure 3.4: f (x) = βx+β3
αx+α3

Now let us prove the “only if" part of Theorem 1.4. We begin by observing:

Lemma 3.3 Mc(K,m) cannot be S2 × S1 , in particular, if Mc(K,m) is a lens space,
then it is an L­space.

Proof of Lemma 3.3. Let w be the linking number between c and K . Then
H1(Mc(K,m)) = ⟨ µc, µK | wµc + mµK = 0, wµK = 0 ⟩, where µc is a merid­
ian of c and µK is that of K . If Mc(K,m) ∼= S2 × S1 , then H1(Mc(K,m)) ∼= Z, and we
have w = 0. Let us put V = S3 − intN(c), which is a solid torus containing K in its
interior; K is not contained in any 3–ball in V . Since w = 0, K is null­homologous
in V . Furthermore, since c is a seiferter for (K,m), the result V(K; m) of V after
m–surgery on K has a (possibly degenerate) Seifert fibration. Then [13, Lemma 3.22]
shows that the Seifert fibration of V(K; m) is non­degenerate and neither a meridian
nor a longitude of V is a fiber in V(K; m), and the base surface of V(K; m) is not a
Möbius band. Since K is null­homologous in V , V(K; m) is not a solid torus [18,
Theorem 1.1], and hence, V(K; m) has a Seifert fibration over the disk with at least two
exceptional fibers. Then Mc(K,m) = V(K; m) ∪ N(c) is obtained by attaching N(c)
to V(K; m) so that the meridian of N(c) is identified with a meridian of V . Since a
regular fiber on ∂V(K; m) intersects a meridian of V , i.e. a meridian of N(c) more than
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once, Mc(K,m) is a Seifert fiber space over S2 with at least three exceptional fibers.
Therefore Mc(K,m) cannot be S2 × S1 . This completes a proof. □(Lemma 3.3)

Suppose first that K(m) is a lens space and c is a core of a genus one Heegaard
splitting of K(m). Then V(K; m) = K(m) − intN(c) is a solid torus and Mc(K,m) =
V(K; m) ∪ N(c) is obviously a lens space. By Lemma 3.3 Mc(K,m) is an L­space.

In the remaining case, as in the proof of the “if" part of Theorem 1.4, Mc(K,m) has a
form S2(b, r1, r2, rc) (0 < r1 ≤ r2 < 1).

Claim 3.4 If rc = −1/0 or rc ∈ Z, then Mc(K,m) is an L­space.

Proof of Claim 3.4. If rc = −1/0, then Mc(K,m) = S2(b, r1, r2,−1/0) is a connected
sum of two lens spaces. Since a connected sum of L­spaces is also an L­space [50,
8.1(5)] ([45]), Mc(K,m) is an L­space. If rc ∈ Z, then Mc(K,m) is a lens space, hence
it is an L­space by Lemma 3.3. □(Claim 3.4)

Now suppose that Mc(K,m) is not an L­space. Then by Claim 3.4 rc ∈ Q \ Z.
We write rc = r′c + p so that 0 < r′c < 1 and p ∈ Z. Then Mc(K,m) =

S2(b, r1, r2, rc) = S2(b + p, r1, r2, r′c). Since Mc(K,m) is not an L­space, b + p = −1
or −2 (Theorem 2.1). It follows from Proposition 2.7 that there is an ε > 0 such that
Kn(mn) = S2(b, r1, r2, f (n)) = S2(b+p, r1, r2, f (n)−p) = S2(−1, r1, r2, f (n)−p) (resp.
S2(−2, r1, r2, f (n)−p)) is not an L­space if 0 < f (n)−p < r′c+ε, i.e. p < f (n) < rc+ε

(resp. r′c − ε < f (n) − p < 1, i.e. rc − ε < f (n) < p + 1). Hence there are at most
finitely many integers n such that Kn(mn) is an L­space, i.e. (Kn,mn) is an L­space
surgery. See Figure 3.5.

x

rc

p+1

y=f(x)

x2

p

x

rc

y=f(x)

x2

r  +ec

r  -ec

x1 x1

Figure 3.5: f (x) = βx+β3
αx+α3

This completes a proof of Theorem 1.4. □(Theorem 1.4)
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Proof of Theorem 1.5. Note that Kn(mn) is a Seifert fiber space which admits a Seifert
fibration over RP2 , or Kn(mn) has S2 × S1 as a connected summand according as
c becomes a non­degenerate fiber, or a degenerate fiber in Kn(mn), respectively. In
the former case, Boyer, Gordon and Watson [8, Proposition 5] prove that Kn(mn) is
an L­space. In the latter case, (Kn,mn) = (O, 0) [17, Theorem 8.1], which is not
an L­space surgery, but there is at most one such integer n [13, Theorem 5.1]. This
completes a proof. □(Theorem 1.5)

Example 3.5 Let us consider a three component link O∪c1∪c2 depicted in Figure 3.6.
It is shown in [13, Lemma 9.26] that c1, c2 become fibers in a Seifert fibration of O(0).
Let A be an annulus in S3 cobounded by c1 and c2 . Performing (−l)–annulus
twist along A, equivalently performing (1/l + 3)–, (−1/l + 3)–surgeries on c1 , c2

respectively, we obtain a knot Kl given by Eudave­Muñoz [15]. Then, as shown in
[15], (Kl, 12l2 − 4l) is a Seifert surgery such that Kl(12l2 − 4l) is a Seifert fiber space
over RP2 with at most two exceptional fibers c1 , c2 of indices |l|, | − 3l + 1| for
l ̸= 0, where we use the same symbol ci to denote the image of ci after (−l)–annulus
twist along A. Let c be one of c1 or c2 . Then c is a seiferter for (Kl, 12l2 − 4l).
Theorem 1.5 shows that a knot Kl,n obtained from Kl by n–twist along c is an L­space
knot for all integers n.

l

1
+3

Oc
1

c
2

1
+3

l

Figure 3.6: c1 and c2 become fibers in a Seifert fibration of O(0).

4 L­space surgeries and twisting along seiferters II – degen­
erate case

In this section we will prove Theorem 1.6.

Proof of Theorem 1.6. Since K(m) has a degenerate Seifert fibration, it is a lens space
or a connected sum of two lens spaces [13, Proposition 2.8].
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(1) K(m) is a lens space with degenerate Seifert fibration.

Then there are at most two degenerate fibers in K(m) [13, Proposition 2.8]. Assume that
there are exactly two degenerate fibers. Then (K,m) = (O, 0) and the exterior of these
two degenerate fibers is S1 × S1 × [0, 1]. If c is a non­degenerate fiber, then Kn(mn)
has S2 × S1 as a connected summand for all integers n, and thus (Kn,mn) = (O, 0)
for all integers n [17, Theorem 8.1]. This contradicts [13, Theorem 5.1]. If c is one
of the degenerate fibers, then (Kn,mn) is a lens space, which is S2 × S1 only when
(Kn,mn) = (O, 0) = (K0,m0), i.e. n = 0 [13, Theorem 5.1]. Thus (Kn,mn) is an
L­space surgery except when n = 0.

Suppose that K(m) has exactly one degenerate fiber td . There are two cases to consider:
K(m) − intN(td) is a fibered solid torus or has a non­degenerate Seifert fibration over
the Möbius band with no exceptional fiber ([13, Proposition 2.8]). In either case, a
meridian of td is identified with a regular fiber on ∂(K(m) − intN(td)).

Assume that K(m)−intN(td) is a fibered solid torus. Suppose that c is a non­degenerate
fiber. If c is a core of the solid torus, then K(m) − intN(c) is a solid torus and Kn(mn)
is a lens space. Hence (Kn,mn) is an L­space surgery except when Kn(mn) ∼= S2 × S1 ,
i.e. (Kn,mn) = (O, 0). By [13, Theorem 5.1] there is at most one such integer n. If
c is not a core in the fibered solid torus K(m) − intN(td), then Kn(mn) is a lens space
( ̸∼= S2 × S1 ), a connected sum of two lens spaces, or a connected sum of S2 × S1 and a
lens space ( ̸∼= S3, S2 × S1 ). The last case cannot happen for homological reasons, and
hence (Kn,mn) is an L­space surgery. If c is the degenerate fiber td , then Kn(mn) is a
lens space, and except for at most integer n0 with (Kn0 ,mn0) = (O, 0), (Kn,mn) is an
L­space surgery.

Next consider the case where K(m) − intN(td) has a non­degenerate Seifert fibration
over the Möbius band. Then (K,m) = (O, 0); see [13, Proposition 2.8]. If c is a
non­degenerate fiber, Kn(mn) has S2 × S1 as a connected summand for all integers
n. This implies that (Kn,mn) = (O, 0) for all n [17, Theorem 8.1], contradicting
[13, Theorem 5.1]. Thus c is a degenerate fiber, and Kn(mn) (n ̸= 0) is a Seifert
fiber space over RP2 with at most one exceptional fiber, which has finite fundamental
group. Hence for any non­zero integer n, (Kn,mn) is an L­space [47, Proposition 2.3].
It follows that if c is a fiber in a degenerate Seifert fibration of a lens space K(m), then
(K,m) is an L­space surgery except for at most one integer n.

(2) K(m) is a connected sum of two lens spaces.

It follows from [13, Proposition 2.8] that K(m) has exactly one degenerate fiber td and
K(m)− intN(td) is a Seifert fiber space over the disk with two exceptional fibers. Note
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that a meridian of td is identified with a regular fiber on ∂(K(m)− intN(td)). We divide
into two cases according as c is a non­degenerate fiber or a degenerate fiber.

(i) c is a non­degenerate fiber.

By [13, Corollary 3.21(1)] c is not a regular fiber. Hence c is an exceptional fiber, and
Kn(mn) is a lens space ( ̸∼= S2 ×S1), a connected sum of two lens spaces, or a connected
sum of S2 × S1 and a lens space ( ̸∼= S3, S2 × S1 ). The last case cannot happen for
homological reasons. Hence (Kn,mn) is an L­space surgery for any integer n.

(ii) c is a degenerate fiber, i.e. c = td .

As in the proof of Theorem 1.4, let E be K(m) − intN(c) with a fibered tubular
neighborhood of the union of two exceptional fibers t1, t2 and one regular fiber t0
removed. Then E is a product circle bundle over the fourth punctured sphere. Take a
cross section of E such that K(m) has a Seifert invariant S2(b, r1, r2, 1/0), where the
Seifert invariant of t0 is b ∈ Z, that of ti is 0 < ri < 1 (i = 1, 2), and that of c is
1/0. We may assume that r1 ≤ r2 . Let s be the boundary curve on ∂N(c) of the cross
section so that [s] · [t] = 1 for a regular fiber t ⊂ ∂N(c). Then [µ] = [t] ∈ H1(∂N(c))
and [λ] = −[s] − β[t] ∈ H1(∂N(c)) for some integer β , i.e. we have:(

[µ]
[λ]

)
=

(
0 1
−1 −β

)(
[s]
[t]

)

Let cn be the image of c after n–twist along c. Then the argument in the proof of
Theorem 1.4 shows that a preferred meridian­longitude pair (µn, λn) of ∂N(cn) has the
expression:

(
[µn]
[λn]

)
=

(
n nβ + 1
−1 −β

)(
[s]
[t]

)

Thus Kn(mn) = S2(b, r1, r2, (nβ + 1)/n) = S2(b+ β, r1, r2, (nβ + 1)/n− β) = S2(b+
β, r1, r2, 1/n) for non­zero integer n.

Claim 4.1 Kn(mn) is an L­space for n = 0,±1.

Proof of Claim 4.1. Recall that K0(m0) = K(m) is a connected sum of two lens spaces
L1 and L2 such that H1(L1) ∼= Zα1 and H1(L2) ∼= Zα2 , where ri = βi/αi . Thus
K0(m0) is an L­space. Since K−1(m−1) and K1(m1) are lens spaces, it remains to show
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that they are not S2 × S1 . Assume for a contradiction that K1(m1) or K−1(m−1) is
S2 × S1 . Then Claim 2.5 shows that r1 + r2 = 1, hence r2 = β2/α2 = (α1 − β1)/α1 .
Thus α1 = α2 , and H1(K0(m0)) ∼= Zα1 ⊕ Zα2 is not cyclic, a contradiction. Hence
neither K1(m1) nor K−1(m−1) is S2 × S1 and they are L­spaces. □(Claim 4.1)

(1) If b + β ≤ −3 or b + β ≥ 1, Proposition 2.4(1) shows that Kn(mn) = S2(b +

β, r1, r2, 1/n) is an L­space if −1 ≤ 1/n ≤ 1, i.e. n ≤ −1 or n ≥ 1. See Figure 4.1(i).
Since K0(m0) is also an L­space (Claim 4.1), Kn(mn) is an L­space for any integer n.

(2) If b + β = −2, Proposition 2.4(2) shows that there is an ε > 0 such that
Kn(mn) = S2(b + β, r1, r2, 1/n) is an L­space if −1 ≤ 1/n ≤ ε. Hence Kn(mn) is an
L­space if n ≤ −1 or n ≥ 1/ε. See Figure 4.1(ii). This, together with Claim 4.1,
shows that Kn(mn) is an L­space if n ≤ 1 or n ≥ 1/ε.

(3) Suppose that b + β = −1. Then Proposition 2.4(3) shows that if r1 + r2 ≥ 1
(resp. r1 + r2 ≤ 1), Kn(mn) = S2(b + β, r1, r2, 1/n) is an L­space for any integer n
satisfying 0 < 1/n ≤ 1 (resp. −1 ≤ 1/n < 0), i.e. n ≥ 1 (resp. n ≤ −1). See
Figure 4.1(i). Combining Claim 4.1, we see that Kn(mn) is an L­space for any n ≥ −1
(resp. n ≤ 1).

(4) If b + β = 0, then Proposition 2.4(4) shows that there is an ε > 0 such that
Kn(mn) = S2(b + β, r1, r2, 1/n) is an L­space if −ε ≤ 1/n ≤ 1. Hence Kn(mn) is an
L­space if n ≥ 1 or n ≤ −1/ε. See Figure 4.1(iii). This, together with Claim 4.1,
shows that Kn(mn) is an L­space if n ≥ −1 or n ≤ −1/ε.

This completes a proof of Theorem 1.6. □(Theorem 1.6)
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Figure 4.1: (i) −1 ≤ 1/n ≤ 1 if n ≤ −1 or n ≥ 1, (ii) −1 ≤ 1/n ≤ ε if n ≤ −1 or n ≥ 1/ε ,
(iii) −ε ≤ 1/n ≤ 1 if n ≤ −1/ε or n ≥ 1.
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As shown by Greene [23, Theorem 1.5], if K(m) is a connected sum of lens spaces,
then K is a torus knot or a cable of a torus knot. More precisely, (K,m) = (Tp,q, pq)
or (Cp,q(Tr,s), pq), where p = qrs ± 1. Note that Tp,q(pq) = L(p, q)♯L(q, p) and
Cp,q(Tr,s)(pq) = L(p, qs2)♯L(q,±1).

Let us continue to prove Theorem 1.7 which is a refinement of Theorem 1.6(2).

Proof of Theorem 1.7. In the following (K,m) is either (Tp,q, pq) or (Cp,q(Tr,s), pq),
where p, q ≥ 2 and p = qrs ± 1. If c becomes a non­degenerate fiber in K(m), then
as shown in the proof of Theorem 1.6, Kn is an L­space knot for any integer n. So
we assume that c becomes a degenerate fiber in K(m). Recall from Theorem 3.19(3)
in [13] that the linking number l between c and K is not zero. Recall also that
Kn(mn) is expressed as S2(b + β, r1, r2, 1/n) = S2(b + β, β1/α1, β2/α2, 1/n), where
0 < ri = βi/αi < 1 and αi ≥ 2. See the proof of Theorem 1.6. Note that
{α1, α2} = {p, q}, and α1α2 = pq ≥ 6.

Claim 4.2 b + β ̸= −2.

Proof of Claim 4.2. Assume for a contradiction that b + β = −2. Then K1(m1) =

S2(−2, β1/α1, β2/α2, 1) = S2(−1, β1/α1, β2/α2). Hence |H1(K1(m1))| = | −
α1α2 +α1β2 +α2β1|, which coincides with pq+ l2 = α1α2 + l2 . Since α1α2 + l2 >

α1α2 , we have |−α1α2+α1β2+α2β1| > α1α2 . This then implies β1/α1+β2/α2 > 2
or β1/α1 + β2/α2 < 0. Either case cannot happen, because 0 < βi/αi < 1. Thus
b + β ̸= −2. □(Claim 4.2)

Claim 4.3 If b + β = −1, β1/α1 + β2/α2 > 1.

Proof of Claim 4.3. If b + β = −1, then K1(m1) = S2(−1, β1/α1, β2/α2, 1) =

S2(β1/α1, β2/α2). Thus |H1(K1(m1))| = α1β2+α2β1 , which coincides with pq+l2 =

α1α2 + l2 . Since α1α2 + l2 > α1α2 , we have α1β2 + α2β1 > α1α2 . This shows
β1/α1 + β2/α2 > 1. □(Claim 4.3)

Claims 4.2 and 4.3, together with the argument in the proof of Theorem 1.6 prove that
Kn is an L­space knot for any n ≥ −1.

Now let us prove that Kn is an L­space knot for all integers n under the assumption
l2 ≥ 2pq.

Claim 4.4 If l2 ≥ 2pq, then b + β ̸= −1.
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Proof of Claim 4.4. Assume that l2 ≥ 2pq, and suppose for a contradiction b + β =

−1. Then K−1(m−1) = S2(−1, β1/α1, β2/α2,−1) = S2(−2, β1/α1, β2/α2), and
|H1(K−1(m−1))| = | − 2α1α2 + α1β2 + α2β1|, which coincides with |pq − l2|. The
assumption l2 ≥ 2pq = 2α1α2 implies that |pq − l2| = l2 − pq = l2 − α1α2 ≥ α1α2 .
Hence |−2α1α2+α1β2+α2β1| = |pq−l2| ≥ α1α2 . Thus we have β1/α1+β2/α2 ≥ 3
or β1/α1 + β2/α2 ≤ 1. The former case cannot happen because 0 < βi/αi < 1,
and the latter case contradicts Claim 4.3 which asserts β1/α1 + β2/α2 > 1. Hence
b + β ̸= −1. □(Claim 4.4)

Claim 4.5 If l2 ≥ 2pq, then b + β ̸= 0.

Proof of Claim 4.5. Suppose for a contradiction that b + β = 0. Then K−1(m−1) =
S2(0, β1/α1, β2/α2,−1) = S2(−1, β1/α1, β2/α2), and |H1(K−1(m−1))| = |−α1α2 +

α1β2 + α2β1|, which coincides with |pq − l2|. Since l2 ≥ 2pq = 2α1α2 , |pq − l2| =
l2−pq = l2−α1α2 ≥ α1α2 . Thus we have |−α1α2+α1β2+α2β1| = |pq−l2| ≥ α1α2 .
This then implies β1/α1 + β2/α2 ≥ 2 or β1/α1 + β2/α2 ≤ 0. Either case cannot
happen, because 0 < βi/αi < 1. Thus b + β ̸= 0. □(Claim 4.5)

Under the assumption l2 ≥ 2pq, Claims 4.2, 4.4 and 4.5 imply that b + β ≤ −3 or
b+β ≥ 1. Then the proof of Theorem 1.6 enables us to conclude that Kn is an L­space
knot for all integers n. □(Theorem 1.7)

Example 4.6 Let K be a torus knot T3,2 and c an unknotted circle depicted in
Figure 4.2; the linking number between c and T3,2 is 5. Then c coincides with c+3,2
in Section 5, and it is a seiferter for (T3,2, 6). Let Kn be a knot obtained from T3,2 by
n–twist along c. Since 52 > 2 · 3 · 2 = 12, following Theorem 1.7 Kn is an L­space
knot for all integers n.

T3,2

c

Figure 4.2: c is a seiferter for (T3,2, 6).

Example 4.7 below gives an example of a seiferter for (K,m), where K is a cable of a
torus knot and K(m) is a connected sum of two lens spaces.
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Example 4.7 Let k be a Berge knot Spora[p] (p > 1). Then k(22p2+9p+1) is a lens
space and [11, Proposition 8.1 and Table 9] shows that (k, 22p2+9p+1) has a seiferter
c such that the linking number between c and k is 4p + 1 and (−1)–twist along c
converts (k, 22p2 + 9p+ 1) into (C6p+1,p(T3,2), p(6p+ 1)). Since p > 1, C6p+1,p(T3,2)
is a nontrivial cable of T3,2 . Thus c is a seiferter for (C6p+1,p(T3,2), p(6p + 1)). Let
Kn be a knot obtained from C6p+1,p(T3,2) by n–twist along c so that K1 = k . Since
(4p+ 1)2 ≥ 2(6p+ 1)p, Theorem 1.7 shows that Kn is an L­space knot for all integers
n.

Finally we show that Kn is hyperbolic if |n| > 3. As shown in [11, Figure 41], Kn

admits a Seifert surgery yielding a small Seifert space which is not a lens space, so we
see that c becomes a degenerate fiber in C6p+1,p(T3,2)(p(6p + 1)) [13, Lemma 5.6(1)].
Hence Corollary 3.21(3) in [13] shows that the link C6p+1,p(T3,2) ∪ c is hyperbolic.
Now the result follows from [13, Proposition 5.11(3)].

We close this section with the following observation, which shows the non­uniqueness
of degenerate Seifert fibration of a connected sum of two lens spaces.

Let c be a seiferter for (Tp,q, pq) which becomes a degenerate fiber in Tp,q(pq). As the
simplest example of such a seiferter c, take a meridian cµ of Tp,q . Then cµ is isotopic
to the core of the filled solid torus (i.e. the dual knot of Tp,q ) in Tp,q(pq), which is
a degenerate fiber. Hence cµ is a seiferter for (Tp,q, pq) which becomes a degenerate
fiber in Tp,q(pq), and Tp,q − intN(cµ) is homeomorphic to S3 − intN(Tp,q). However,
in general, Tp,q(pq) − intN(c) is not necessarily homeomorphic to S3 − intN(Tp,q).

Example 4.8 Let us take an unknotted circle c as in Figure 4.3. Then c is a seiferter
for (T5,3, 15) which becomes a degenerate fiber in T5,3(15), but T5,3(15) − intN(c) is
not homeomorphic to S3 − intN(T5,3).

Proof of Example 4.8. As shown in Figure 4.3, T5,3(15) is the the two­fold branched
cover of S3 branched along L′ and c is the preimage of an arc τ . Hence T5,3(15) −
intN(c) is a Seifert fiber space D2(2/3,−2/5). Since |H1(S2(2/3,−2/5, x))| = |4 +

15x| cannot be 1 for any integer x , the Seifert fiber space T5,3(15) − intN(c) cannot
be embedded in S3 , and hence it is not homeomorphic to S3 − intN(T5,3). (Note that
c coincides with c−5,3 in Section 5.) □(Example 4.8)
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c

K= T      = P(-2, 3, 5)

L p

5,3

L’

15

t

Figure 4.3: T5,3(15) is the the two­fold branched cover of S3 branched along L′ .

5 L­space twisted torus knots

Each torus knot has obviously an unknotted circle c which satisfies the desired property
in Question 1.1.

Example 5.1 Embed a torus knot Tp,q into a genus one Heegaard surface of S3 . Then
cores of the Heegaard splitting sp and sq are seiferters for (Tp,q,m) for all integers m.
We call them basic seiferters for Tp,q ; see Figure 5.1. An n–twist along sp (resp. sq )
converts Tp,q into a torus knot Tp+nq,q (resp. Tp,q+np ), and hence n–twist along a basic
seiferter yields an L­space knot for all n.

s

s

q

p

Tp,q

Figure 5.1: sp and sq are basic seiferters for (Tp,q,m).

Twistings along a basic seiferter keep the property of being L­space knots, but produce
only torus knots. In the following, we will give another circle c such that twistings
Tp,q along c produce an infinite family of hyperbolic L­space knots.

Definition 5.2 (twisted torus knot [10]) Let Σ be a genus one Heegaard surface
of S3 . Let Tp,q (p > q ≥ 2) be a (p, q)–torus knot which lies on Σ. Choose an
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unknotted circle c ⊂ S3 − Tp,q so that it bounds a disk D such that D ∩ Σ is a single
arc intersecting Tp,q in r (2 ≤ r ≤ p+ q) points in the same direction. A twisted torus
knot K(p, q; r, n) is a knot obtained from Tp,q by adding n full twists along c.

Remark 5.3 Twisting Tp,q along the basic seiferter sp (resp. sq ) n–times, we obtain
the twisted torus knot K(p, q; q, n) (resp. K(p, q; p, n) ), which is a torus knot Tp+nq,q

(resp. Tp,q+np ), and hence an L­space knot.

In [53] Vafaee studies twisted torus knots from a viewpoint of knot Floer homology
and showed that twisted torus knots K(p, kp ± 1; r, n), where p ≥ 2, k ≥ 1, n > 0
and 0 < r < p is an L­space knot if and only if either r = p − 1 or r ∈ {2, p − 2}
and n = 1. We will give yet more twisted torus knots which are L­space knots by
combining seiferter technology and Theorem 1.7.

Proof of Theorem 1.8. In the following, let Σ be a genus one Heegaard surface of S3 ,
which bounds solid tori V1 and V2 .

• K(p, q; p + q, n) (p > q ≥ 2). Given any torus knot Tp,q (p > q ≥ 2) on Σ, let
us take an unknotted circle c+p.q in S3 − Tp,q as depicted in Figure 5.2(i); the linking
number between c+p,q and Tp,q is p + q.

Tp, q

c+
p, q

g

(i)                                                                                   (ii)

S S
V1

V2

Figure 5.2: c+p,q is a seiferter for (Tp,q, pq).

Let V be a solid torus S3 − intN(c+p,q), which contains Tp,q in its interior. Lemma 9.1
in [36] shows that V(K; pq) = Tp,q(pq) − intN(c+p,q) is a Seifert fiber space over the
disk with two exceptional fibers of indices p, q, and a meridian of N(c+p,q) coincides
with a regular fiber on ∂V(K; pq). Hence c+p,q is a degenerate fiber in Tp,q(pq), and
thus it is a seiferter for (Tp,q, pq). Let D be a disk bounded by c+p,q . Since the arc
c+p,q ∩ Vi is isotoped in Vi to an arc γ ⊂ Σ depicted in Figure 5.2(ii) leaving its
endpoints fixed, the disk D can be isotoped so that D ∩ Σ = γ , which intersects
Tp,q in p + q points in the same direction. Thus n–twist along c+p,q converts Tp,q
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into the twisted torus knot K(p, q; p + q, n). Since c+p,q is a seiferter for (Tp,q, pq)
and (p + q)2 = p2 + q2 + 2pq > 2pq, we can apply Theorem 1.7 to conclude that
T(p, q, p + q, n) is an L­space knots for all integers n.

We show that T(p, q, p+q, n) is hyperbolic if |n| > 3. By linking number consideration,
we see that c+p,q is not a basic seiferter. Then Corollary 3.21(3) in [13] ([36, Claim 9.2])
shows that Tp,q∪c+p.q is a hyperbolic link. Thus [13, Proposition 5.11(2)] that K(p, q; p+
q, n) is a hyperbolic knot if |n| > 3.

• K(p, q; p − q, n) (p > q ≥ 2). Suppose that p − q ̸= 1. Then let us take c−p,q as
in Figure 5.3(i) instead of c+p,q ; the linking number between c−p,q and Tp,q is p − q. It
follows from [13, Remark 4.7] that c−p,q is also a seiferter for (Tp,q, pq) and the link
Tp,q ∪ c−p,q is hyperbolic. Note that if p − q = 1, then c−p,q is a meridian of Tp,q . As
above we see that each arc c−p,q ∩ Vi is isotoped in Vi to an arc γ ⊂ Σ depicted in
Figure 5.3(ii) leaving its endpoints fixed. So a disk D bounded by c−p,q can be isotoped
so that D ∩ Σ = γ , which intersects Tp,q in p − q points in the same direction. Thus
n–twist along c−p,q converts Tp,q into the twisted torus knot K(p, q; p−q, n). Since c−p,q
is a seiferter for (Tp,q, pq), Theorem 1.7 shows that T(p, q, p− q, n) is an L­space knot
for any n ≥ −1. Following [13, Proposition 5.11(2)] T(p, q, p − q, n) is a hyperbolic
knot if |n| > 3.

Tp,q

-cp, q

g

(i)                                                                                   (ii)

S
V1

V2 S

Figure 5.3: c−p,q is a seiferter for (Tp,q, pq).

• K(3p + 1, 2p + 1; 4p + 1, n) (p > 0). Let k be a torus knot Tp,2p+1 on a genus two
Heegaard surface, with unknotted circles α and c as shown in Figure 5.4. Applying
1–twist along α , we obtain a torus knot T3p+1,2p+1 . We continue to use the same
symbol c to denote the image of c after 1–twist along α; the linking number between
c and T3p+1,2p+1 is 4p + 1. Note that 1–twist along c converts T3p+1,2p+1 into a
Berge knot Sporb[p] as shown in [11, Subsection 8.2]. Following [11, Lemma 8.4] c
is a seiferter for a lens space surgery (Sporb[p], 22p2 + 13p + 2) = (Sporb[p], (3p +

1)(2p+1)+ (4p+1)2). Thus c is also a seiferter for (T3p+1,2p+1, (3p+1)(2p+1)). Let
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D be a disk bounded by c. Then T3p+1,2p+1 ∪D can be isotoped so that T3p+1,2p+1 lies
on Σ, D ∩ Σ consists of a single arc, which intersects T3p+1,2p+1 in 4p + 1 points in
the same direction. Thus n–twist along c converts T3p+1,2p+1 into a twisted torus knot
K(3p+1, 2p+1; 4p+1, n). Since c is a seiferter for (T3p+1,2p+1, (3p+1)(2p+1)) and
(4p + 1)2 > 2(3p + 1)(2p + 1), Theorem 1.7 shows that K(3p + 1, 2p + 1; 4p + 1, n)
is an L­space knot for all integers n. Let us observe that K(3p + 1, 2p + 1; 4p + 1, n)
is a hyperbolic knot if |n| > 3. Figure 44 in [11] shows that n–twist converts
(T3p+1,2p+1, (3p + 1)(2p + 1)) into a Seifert surgery which is not a lens space surgery
if |n| ≥ 2. Hence c becomes a degenerate fiber in T3p+1,2p+1((3p + 1)(2p + 1)) [13,
Lemma 5.6(1)], and Corollary 3.21(3) in [13] shows that the link T3p+1,2p+1 ∪ c is
hyperbolic. Now the result follows from [13, Proposition 5.11(2)].

k = T

a

-1

c

p, 2p+1

wraps p times

Figure 5.4: A surgery description of T3p+1,2p+1 and a seiferter c

• K(3p + 2, 2p + 1; 4p + 3, n) (p > 0). As above, we follow the argument in [11,
Subsection 8.3], but we need to take the mirror image at the end. Take a torus knot
k = T−p−1,2p+1 on a genus two Heegaard surface of S3 , unknotted circles α′ and c′ as
shown in Figure 5.5. Then (−1)–twist along α′ converts T−p−1,2p+1 into T−3p−2,2p+1 .
As above we denote the image of c′ after (−1)–twist along α′ by the same symbol
c′ ; the linking number between c′ and T−3p−2,2p+1 is 4p + 3. Note that (−1)–twist
along c′ converts T−3p−2,2p+1 into a Berge knot Sporc[p] as shown in [11, Subsection
8.3]. Then Lemma 8.6 in [11] shows that c′ is a seiferter for a lens space surgery
(Sporc[p],−22p2 −31p−11) = (Sporc[p], (−3p−2)(2p+1)− (4p+3)2). Thus c′ is
also a seiferter for (T−3p−2,2p+1, (−3p − 2)(2p + 1)). Let D′ be a disk bounded by c′ .
Then T−3p−2,2p+1 ∪D′ can be isotoped so that T−3p−2,2p+1 lies on Σ, D′ ∩Σ consists
of a single arc, which intersects T−3p−2,2p+1 in 4p + 3 points in the same direction.
Now taking the mirror image of T−3p−2,2p+1 ∪ D′ , we obtain T3p+2,2p+1 ∪ D with
∂D = c; D ∩ Σ consists of a single arc, and D intersects T3p+2,2p+1 in 4p + 3 points
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in the same direction. Then c is a seiferter for (T3p+2,2p+1, (3p + 2)(2p + 1)). Since
(4p + 3)2 > 2(3p + 2)(2p + 1), Theorem 1.7 shows that K(3p + 2, 2p + 1; 4p + 3, n)
is an L­space knot for all integers n. Let us show that K(3p + 2, 2p + 1; 4p + 3, n) is
hyperbolic if |n| > 3. Figure 47 in [11], together with [13, Lemma 5.6(1)], shows that
c′ becomes a degenerate fiber in T−3p−2,2p+1((−3p− 2)(2p+ 1)), and so c becomes a
degenerate fiber in T3p+2,2p+1((3p + 2)(2p + 1)). Apply the same argument as above
to obtain the desired result.

k= T

a’

1

-p-1, 2p+1

c’

wraps p times

Figure 5.5: A surgery description of T−3p−2,2p+1 and a seiferter c′

• K(2p + 3, 2p + 1; 2p + 2, n) (p > 0). We follow the argument in [11, Section 6];
as above we need to take the mirror image at the end. Take a torus knot k = T−3p−2,3

on a genus two Heegaard surface of S3 , unknotted circles α′ and c′ as in Figure 5.6(i).
Then (−2)–twist along α′ converts the torus knot T−3p−2,3 into a Berge knot VI[p].
Lemma 6.1 in [11] shows that c′ , the image of c′ after the (−2)–twist along α′ , is a
seiferter for a lens space surgery (VI[p],−8p2 −16p−7); the linking number between
c′ and VI[p] is 2p + 2. Now we show that 1–twist along c′ (after (−2)–twist along
α′ ) converts (VI[p],−8p2 − 16p − 7) into (T−2p−1,2p+3, (−2p − 1)(2p + 3)). Note
that c′ remains a seiferter for (T−2p−1,2p+3, (−2p − 1)(2p + 3)). Since the linking
number between c′ and VI[p] is 2p + 2, the surgery slope −8p2 − 16p − 7 becomes
−8p2 − 16p − 7 + (2p + 2)2 = (−2p − 1)(2p + 3). Let us observe that the knot
obtained from VI[p] by 1–twist along c′ , which has a surgery description given by
Figure 5.6(i), is T−2p−1,2p+3 . The surgeries described in Figure 5.6(i) can be realized
by the following two successive twistings: 1–twist along an annulus cobounded by c′

and α′ (cf.[13, Definition 2.32]), and (−1)–twist along α′ . The annulus twist converts
k = T−3p−2,3 into k′ = T−2p−1,2 as shown in Figure 5.6(ii). Then (−1)–twist along
α′ changes k′ = T−2p−1,2 into T−2p−1,2p+3 , which lies on the genus one Heegaard
surface Σ. Let D′ be a disk bounded by c′ . Then D′ can be slightly isotoped so that
D′ ∩ Σ consists of a single arc, which intersects T−2p−1,2p+3 in 2p + 2 points in the
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same direction; see Figure 5.6(ii). Now taking the mirror image of T−2p−1,2p+3 ∪ D′ ,
we obtain T2p+1,2p+3 ∪ D with ∂D = c; D ∩ Σ consists of a single arc, which
intersects T2p+1,2p+3 in 2p + 2 points in the same direction. Then c is a seiferter for
(T2p+1,2p+3, (2p + 1)(2p + 3)) = (T2p+3,2p+1, (2p + 3)(2p + 1)). Theorem 1.7 shows
that K(2p + 3, 2p + 1; 2p + 2, n) is an L­space knot for any integer n ≥ −1. The
hyperbolicity of knots K(2p + 3, 2p + 1; 2p + 2, n) for |n| > 3 follows from the same
argument as above, in which we refer to Figure 33 instead of Figure 47 in [11].

1
2

c’

k = T

wraps p times

1

c’-1

=a’

-3p-2, 3

a’

(i)                                                                                                          (ii)
k’ = T-2p-1, 2

S

wraps p times

Figure 5.6: Surgery descriptions of T−2p−1,2p+3 and a seiferter c′

□(Theorem 1.8)

Proof of Corollary 1.9. Given any torus knot Tp,q (p > q ≥ 2), let us take an unknotted
circle c = c+p.q in S3−Tp,q (Figure 5.2(i)). Then as shown in the proof of Theorem 1.8,
n–twist along c converts Tp,q into the twisted torus knot K(p, q; p + q, n), which is an
L­space knot for all integers n and hyperbolic if |n| > 3.

The last assertion of Corollary 1.9 follows from Claim 5.4 below. Thus the unknotted
circle c satisfies the required property in Corollary 1.9. □(Corollary 1.9)

Claim 5.4 {K(p, q; p + q, n)}|n|>3 is a set of mutually distinct hyperbolic knots.

Proof of Claim 5.4. Recall that c+p,q is a seiferter for (Tp,q, pq) and the linking number
between c+p,q and Tp,q is p+ q. Thus n–twist along c+p,q changes (Tp,q, pq) to a Seifert
surgery (K(p, q; p + q, n), pq + n(p + q)2). Note that K(p, q; p + q, n)(pq + n(p + q)2)
is a Seifert fiber space over S2 with at most three exceptional fibers of indices p, q and
|n|, see the proof of Theorem 1.8.

Assume that K(p, q; p+q, n) is isotopic to K(p, q; p+q, n′) for some integers n, n′ with
|n|, |n′| > 3. Then pq+n(p+q)2 –, and pq+n′(p+q)2 –surgeries on the hyperbolic knot
K(p, q; p+q, n) yield Seifert fiber spaces. Hence |pq+n(p+q)2− (pq+n′(p+q)2)| =



L­space surgery and twisting operation 31

|(n − n′)(p + q)2| ≤ 8 by [32, Theorem 1.2]. Since p + q ≥ 5, we have n = n′ . This
completes a proof. (In the above argument, we can apply [1, Theorem 8.1] which gives
the bound 10 instead of 8.) □(Claim 5.4)

6 L­space twisted Berge knots

In this section we prove Theorem 1.11 using Theorem 1.7 and observations in [13, 11].

Berge [6] gave twelve infinite families of knots which admit lens space surgeries. These
knots are referred to as Berge knots of types (I)–(XII) and conjectured to comprise all
knots with lens space surgeries. Recall that a Berge knot of type (I) is a torus knot
and that of (II) is a cable of a torus knot, henceforth we consider Berge knots of types
(III)–(XII).

• Berge knots of types (III)–(VI).

Suppose that K is a Berge knot of type (III), (IV), (V) or (VI). Then we have an
unknotted solid torus V containing K in its interior such that V(K; m) is a solid torus
[6, 11], and hence the core c of the solid torus W = S3 − intV is a seiferter for (K,m)
and (Kn,mn) is also a lens space. If Kn(mn) is not an L­space, then it is S2 × S1 and
(Kn,mn) = (O, 0) ([17, Theorem 8.1]). Now let us exclude this possibility. First we
note that V(Kn,mn) ∼= V(K; m) for all integers n and H1(V(Kn; mn)) ∼= Z ⊕ Z(mn,ω)

[20, Lemma 3.3], where ω is the winding number of K in V , i.e. the linking number
between Kn and c. Since V(Kn; mn) ∼= S1 × D2 , Kn is a 0 or 1–bridge braid in V
[18], hence ω ≥ 2. This then implies that mn ̸= 0. Hence (Kn,mn) is an L­space knot
for all integers n.

• Berge knots of types (VII), (VIII).

Let g1 and g2 be simple closed curves embedded in a genus two Heegaard surface F
of S3 and c an unknot in S3 as in Figure 6.1.

Take a regular neighborhood N(g1 ∪ g2) of g1 ∪ g2 in F , which is a once punctured
torus. Then the curve ∂N(g1 ∪ g2) becomes a trefoil knot after (−1)–twist along
c, and the figure­eight knot after 1–twist along c. Let k be a knot in N(g1 ∪ g2)
representing a[g1] + b[g2] ∈ H1(N(g1 ∪ g2)), where a and b are coprime integers.
The we see that k is a torus knot Ta+b,−a . The Berge knot K of type (VII) (resp.
(VIII)) is obtained from Ta+b,−a by (−1)–twist (resp. 1–twist) along c. As shown in
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.

g1

g2

cN( )Ug     g
1 2

F

Figure 6.1: A regular neighborhood N(g1 ∪ g2) of g1 ∪ g2 in F and an unknotted circle c

[13, Lemma 4.6], Ta+b,−a ∪ c is isotopic to Ta+b,−a ∪ c+a+b,−a and Berge knot of type
(VII) is K(a + b,−a; |b|,−1), that of type (VIII) is K(a + b,−a; |b|, 1); see the proof
of Theorem 1.8. (Here we extend the notation K(p, q; r, n) for twisted torus knots in
an obvious fashion to include the case where p, q are possibly negative integers.) We
assume |a|, |b| ≥ 2, for otherwise K(a + b,−a, |b|,±1) is a torus knot. Furthermore,
if |a + b| = 1, then Ta+b,−a ∪ c = T±1,−a ∪ c is a torus link T2,2b or T2,−2b , and
K(a + b,−a; |b|,±1) is a torus knot, so we assume |a + b| > 1. Let Kn be a knot
obtained from the Berge knot K by n–twist along c, i.e. Kn = K(a+b,−a; |b|, n+ε);
ε = −1 if K is of type (VII), ε = 1 if K is of type (VIII). If a(a + b) < 0
(i.e. −a(a + b) > 0), then by Theorem 1.8 Kn is an L­space knot for any integer
n. If a(a + b) > 0 (i.e. −a(a + b) < 0), Theorem 1.8 shows that the mirror image
K(a + b, a; |b|,−n − ε) of Kn is an L­space knot if −n − ε ≥ −1, i.e. n ≤ 1 − ε.
Hence Kn is an L­space knot for any integer n ≤ 1 − ε.

• Berge knots of types (IX)–(XII).

These knots are often called sporadic knots and we denote them by Spora[p], Sporb[p],
Sporc[p] and Spord[p] (p ≥ 0), respectively. It is easy to see that Spora[0] and
Sporb[0] are trivial knots, Sporc[0] = T−3,4 and Sporc[0] = T−5,3 . Thus we may
assume p > 0 for Sporχ[p] (χ = a,b, c,d). Furthermore, we observe that Spora[1]
is obtained from T3,2 by 1–twist along the seiferter c = c+3,2 ; see Figure 4.2. Hence
following Example 4.6 a knot Kn obtained from Spora[1] by n–twist along c is an
L­space knot for any integer n. Thus we may assume p > 1 for Spora[p].

As shown in Example 4.7 the lens space surgery (Spora[p], 22p2 + 9p+ 1) is obtained
from (C6p+1,p(T3,2), p(6p + 1)) by 1–twist along the seiferter c, and n–twist along c
converts C6p+1,p(T3,2) into an L­space knot for all integers n. Hence n–twist changes
Spora[p] to an L­space knots for all integers n.
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The proof of Theorem 1.8 shows that the lens space surgery (Sporb[p], 22p2+13p+2)
is obtained from (T3p+1,2p+1, (3p+ 1)(2p+ 1)) by 1–twist along the seiferter c, hence
Kn obtained from Sporb[p] by n–twist along c is K(3p+ 1, 2p+ 1; 4p+ 1, n+ 1). By
Theorem 1.8 Kn is an L­space knot for all integers n. Similarly (Sporc[p],−22p2 −
31p− 11) is obtained from (T−3p−2,2p+1, (−3p− 2)(2p+ 1)) by (−1)–twist along c′ ,
and Kn obtained from Sporc[p] by n–twist along c′ is K(−3p−2, 2p+1; 4p+4, n−1),
which is the mirror image of K(3p + 2, 2p + 1; 4p + 4,−n + 1). Theorem 1.8 shows
that K(3p + 2, 2p + 1; 4p + 4,−n + 1) is an L­space knot for any integer n, and thus
Kn is an L­space knot for all integers n.

Finally, let us consider a Berge knot Spord[p] (p ≥ 0). Proposition 8.8 in [11] shows
that the lens space surgery (Spord[p],−22p2 − 35p − 14) has a seiferter c′ such that
the linking number between c′ and Spord[p] is 4p + 3 and 1–twist along c′ converts
(Spord[p],−22p2−35p−14) into (C−6p−5,p+1(T−3,2), (−6p−5)(p+1)) for which c′ is
a seiferter. Let Kn be a knot obtained from Spord[p] by n–twist along c′ , i.e. obtained
from C−6p−5,p+1(T−3,2) by (n − 1)–twist along c′ . Now we take the mirror image
of C−6p−5,p+1(T−3,2) ∪ c′ to obtain a link C6p+5,p+1(T3,2) ∪ c. Then c is a seiferter
for (C6p+5,p+1(T3,2), (6p + 5)(p + 1)) and Kn is the mirror image of the knot obtained
from C6p+5,p+1(T3,2) by (−n)–twist along c. Since (4p + 3)2 ≥ 2(6p + 5)(p + 1),
Theorem 1.7 shows that Kn is an L­space knot for all integers n.

Let us show that Kn is a hyperbolic knot except for at most four integers n. Following
[13, Theorem 5.10] it is sufficient to observe that K ∪ c is a hyperbolic link. Suppose
that K is a Berge knot of type (III), (IV), (V) or (VI). Then as mentioned above,
V(K; m) is a solid torus, where V = S3 − intN(c). By [5, Theorem 3.2] V − intN(K)
is atoroidal. If V − intN(K) is not hyperbolic, then it is Seifert fibered and K is a
torus knot; see [13, Lemma 3.3]. This contradicts the assumption. Hence K ∪ c is a
hyperbolic link.

If K is of type (VII) or (VIII), then K ∪ c ∼= Ta+b,−a ∪ c+a+b,−a is a hyperbolic link;
see the proof of Theorem 1.8.

Assume that K is of type (IX), i.e. K = Spora[p]. Then as shown in the proof of
Example 4.7 K ∪ c is a hyperbolic link. In the case where K is of type (X) or (XI),
i.e. K = Sporb[p] or Sporc[p], then it follows from the proof of Theorem 1.8 that
K ∪ c is a hyperbolic link. The argument in the proof of Example 4.7 shows K ∪ c is a
hyperbolic link for type (XII) Berge knot K = Spord[p]; we refer to Figure 53 instead
of Figure 41.

This completes a proof of Theorem 1.11. □(Theorem 1.11)
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7 L­space twisted unknots

In [13] we introduced “m–move" to find seiferters for a given Seifert surgery. In
particular, m–move is effectively used in [13, Theorem 6.21] to show that (O,m) has
infinitely many seiferters for each integer m. Among them there are infinitely many
seiferters c such that (m, 0)–surgery on O ∪ c is an L­space; see Remark 7.3.

Let us take a trivial knot cm,p in S3 − O as illustrated in Figure 7.1, where p is an odd
integer with |p| ≥ 3.

c

-p+2m-1 p-1

m,p

O

3

-3

=

=

=
=

3

-3

Figure 7.1: O ∪ cm,p ; a vertical (resp. horizontal) box with integer n denotes a vertical (resp.
horizontal) stack of n crossings.

Then as shown in [13, Theorem 6.21] cm,p is a seiferter for (O,m) such that O ∪ cm,p

is a hyperbolic link in S3 if p ̸= 2m ± 1. Denote by Km,p,n and mp,n the images of
O and m after n–twist along cm,p . Now we investigate Km,p,n(mp,n) using branched
coverings and Montesinos trick [38, 39]. Figure 7.2 (b) shows that Km,p,n(mp,n) has
an involution with axis L for any integer n. Taking the quotient by this involution,
we obtain a 2–fold branched cover π : Km,p,n(mp,n) → S3 branched along L′ which
is the quotient of L; see Figure 7.2(c). As shown in Figure 7.2(d) L′ can be isotoped
to a Montesinos link M(−n/(mn + 1), (−p + 1)/2p, (−p + 2m + 1)/(−2p + 4m)).
Hence by [38] Km,p,n(mp,n), which is the 2–fold branched cover branched along the
Montesinos link L′ , is a Seifert fiber space

S2(
−n

mn + 1
,
−p + 1

2p
,

p − 2m − 1
2p − 4m

).

The image π(cm,p) is an arc τ whose ends lie in L′ ; see Figure 7.2(c) and (d). It follows
from [12, Lemma 3.2] that cm,p is a seiferter for (Km,p,n,mp,n); in case of n = 0, cm,p

is a seiferter for (O,m). In the following, the image of cm,p after n–twist along itself
is denoted by the same symbol.

In what follows assume m ≤ 0 and p ≥ 3.
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Figure 7.2: Km,p,n(mp,n) is the two­fold branched cover of S3 branched along L′ .



36 Kimihiko Motegi

Proposition 7.1 Assume that m ≤ 0, p ≥ 3.

(1) (Km,p,n,mp,n) is an L­space surgery except when (m, n) = (0, 0). If (m, n) =

(0, 0), then (Km,p,n,mp,n) = (O, 0) and Km,p,n(mp,n) = O(0) ∼= S2 × S1 .

(2) Km,p,n is a nontrivial knot if n ̸= 0.

(3) {Km,p,n}|n|>1 is a set of mutually distinct hyperbolic L­space knots.

Proof of Proposition 7.1. We note here that the linking number between cm,p and O is
p − m.

(1) Assume first that m = 0. Then Km,p,n(mp,n) is a lens space S2(−n, (−p +

1)/2p, (p − 1)/2p) = S2(−n − 1, (p + 1)/2p, (p − 1)/2p), which is S2 × S1 if and
only if n = 0 (Claim 2.5). Hence Km,p,n(mp,n) is an L­space except when n = 0.

Next assume m = −1. Then Km,p,n(mp,n) = S2(−n/(−n + 1), (−p + 1)/2p, (p +

1)/(2p + 4)) = S2(n/(n − 1), (−p + 1)/2p, (p + 1)/(2p + 4)). If n = 0 or 2,
Km,p,n(mp,n) is a lens space, but it is not S2 × S1 , because mp,n = −1 + n(m −
p)2 = −1 + n(p + 1)2 ̸= 0. If n = 1, Km,p,n(mp,n) is a connected sum of two lens
spaces, and thus an L­space. Suppose that n ̸= 0, 1, 2. In case of n < 0, we have
0 < n/(n−1) < 1 and Km,p,n(mp,n) = S2(n/(n−1), (−p+1)/2p, (p+1)/(2p+4)) =
S2(−1, n/(n − 1), (p + 1)/2p, (p + 1)/(2p + 4)). Note that (p + 1)/2p + (p +

1)/(2p + 4) = 1/2 + 1/2p + 1/2 − 1/(2p + 4) = 1 + 1/2p − 1/(2p + 4). Since
p ≥ 3, we have 2p + 4 > 2p > 0, and hence 1/2p − 1/(2p + 4) > 0. It follows that
(p + 1)/2p + (p + 1)/(2p + 4) = 1 + 1/2p − 1/(2p + 4) > 1. Then Lemma 2.3(2)
shows that Km,p,n(mp,n) is an L­space. If n > 2, then 1 < n/(n − 1) < 2 and
Km,p,n(mp,n) = S2(n/(n − 1), (−p + 1)/2p, (p + 1)/(2p + 4)) = S2(1/(n − 1), (p +

1)/2p, (p+1)/(2p+4)). Since 0 < 1/(n−1), (p+1)/2p, (p−2m−1)/(2p−4m) < 1,
Km,p,n(mp,n) is an L­space by Theorem 2.1(1).

Assume that m = −2. Then Km,p,n(mp,n) = S2(−n/(−2n + 1), (−p + 1)/2p, (p +

3)/(2p + 8)) = S2(n/(2n − 1), (−p + 1)/2p, (p + 3)/(2p + 8)). If n = 0, 1, then
Km,p,n(mp,n) is a lens space, but it is not S2 × S1 , because mp,n = −2 + n(m − p)2 =

−2 + n(p + 2)2 ̸= 0. Otherwise, 0 < n/(2n − 1) < 1 and Km,p,n(mp,n) = S2(n/(2n −
1), (−p+1)/2p, (p+3)/(2p+8)) = S2(−1, n/(2n−1), (p+1)/2p, (p+3)/(2p+8)).
Since (p+ 1)/2p+ (p+ 3)/(2p+ 8) = 1/2+ 1/2p+ 1/2− 1/(2p+ 8) = 1+ 1/2p−
1/(2p + 8) > 1, Km,p,n(mp,n) is an L­space by Lemma 2.3(2).

Finally assume that m ≤ −3. then Km,p,n(mp,n) = S2(−n/(mn+1), (−p+1)/2p, (p−
2m − 1)/(2p − 4m)) = S2(−1, −n/(mn + 1), (p + 1)/2p, (p − 2m − 1)/(2p − 4m)).
If n = 0, then Km,p,n(mp,n) is a lens space, but it is not S2 × S1 , because mp,n =
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m + n(m − p)2 = m ≤ −3. Assume n ̸= 0. Then by the assumption p ≥ 3,m ≤ −3
we have 0 < −n/(mn + 1) < 1, 0 < (p + 1)/2p < 1 and 0 < (p − 2m − 1)/(2p −
4m) = 1/2 − 1/(2p − 4m) < 1. Since (p + 1)/2p + (p − 2m − 1)/(2p − 4m) =

1/2 + 1/2p + 1/2 − 1/(2p − 4m) = 1 + 1/2p − 1/(2p − 4m) > 1, Lemma 2.3(2)
shows that Km,p,n(mp,n) is an L­space.

(2) Since m ≤ 0 and p ≥ 3, p ̸= 2m± 1, hence O∪ cm,p is a hyperbolic link; see [13,
Theorem 6.21]. Then Km,p,n is nontrivial for any n ̸= 0 [30, 35].

(3) By (1) Km,p,n is an L­space knot. Since O ∪ cm,p is a hyperbolic link, the
hyperbolicity of Km,p,n for |n| > 1 follows from [2, 21, 37]. Thus Km,p,n (|n| > 1) is a
hyperbolic L­space knot. Let us choose cm,p and then apply n–twist along cm,p to obtain
a knot Km,p,n . It remains to show that Km,p,n and Km,p,n′ are distinct knots. Suppose
that Km,p,n and Km,p,n′ are isotopic for some integers n and n′ with |n|, |n′| > 1. Then
(m + n(p − m)2)–, and (m + n′(p − m)2)–surgeries on Km,p,n = Km,p,n′ produce small
Seifert fiber spaces, where p−m ≥ 3. (Note that since |n| > 1, mn+1 cannot be zero.)
Since Km,p,n is a hyperbolic knot, Lackenby and Meyerhoff [32, Theorem 1.2] prove
that the distance |m+n(p−m)2 − (m+n′(p−m)2| between above two non­hyperbolic
surgeries is at most 8. Hence |(n − n′)(p − m)2| ≤ 8, which implies n = n′ because
p − m ≥ 3. □(Proposition 7.1)

Next we investigate link types of O ∪ cm,p .

Proposition 7.2 Let cm,p and cm′,p′ be seiferters for (O,m) and (O,m′), respectively.
Suppose that m,m′ ≤ 0, p, p′ ≥ 3.

(1) If p − m ̸= p′ − m′ , then O ∪ cm,p and O ∪ cm′,p′ are not isotopic. In particular,
if p ̸= p′ , then O ∪ cm,p and O ∪ cm,p′ are not isotopic.

(2) If p − m = p′ − m′ , then O ∪ cm,p and O ∪ cm′,p′ are not isotopic provided that
|m − m′| > 3.

Proof of Proposition 7.2. (1) Note that the linking number between cm,p and O is
p − m. Hence if O ∪ cm,p is isotopic to O ∪ cm′,p′ as ordered links, then we have
p − m = p′ − m′ .

(2) Since p ̸= 2m ± 1 and p′ ̸= 2m′ ± 1, both O ∪ cm,p and O ∪ cm′,p′ are hyperbolic
links [13]. Recall that cm,p is a seiferter for (O,m) and cm′,p′ is a seiferter for (O,m′).
Suppose that O ∪ cm,p and O ∪ cm′,p′ are isotopic. Then cm,p is a seiferter for (O,m′)
as well. Let V be the solid torus S3 − intN(cm,p), which contains O in its interior.
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Note that m–surgery of V along O yields a Seifert fiber space over the disk with two
exceptional fibers of indices 2p, 2p−4m, and m′–surgery of V along O yields a Seifert
fiber space over the disk with two exceptional fibers of indices 2p′, 2p′ − 4m′ . Since
these Seifert fiber spaces contain essential annuli, Gordon and Wu [22, Corollary 1.2]
show that |m − m′| ≤ 3. □(Proposition 7.2)

Theorem 1.10 follows from Propositions 7.1 and 7.2. □(Theorem 1.10)

Remark 7.3 For each seiferter cm,p (m ≤ 0, p ≥ 3), Mcm,p(O,m) is an L­space. In
fact, Mcm,p(O,m), which is the limit of Km,p,n(mp,n) when |n| tends to ∞ (Remark 3.2),
is S2(−1/m, (−p+ 1)/2p, (p− 2m− 1)/(2p− 4m)) = S2(−1,−1/m, (p+ 1)/2p, (p−
2m − 1)/(2p − 4m)). If m = −1, 0, then Mcm,p(O,m) is an L­space (Claim 3.4). If
m < −1, since (p+ 1)/2p+ (p− 2m− 1)/(2p− 4m) = 1+ 1/2p− 1/(2p− 4m) > 1,
Mcm,p(O,m) is an L­space.

On the other hand, for instance, Mc3,3(O, 3) is not an L­space. Indeed, Mc3,3(O, 3) =
S2(−1/3,−1/3, 2/3) = S2(−2, 2/3, 2/3, 2/3), and taking k = 2, a = 1 in Theo­
rem 2.1(3), we have (1− 2/3, 1− 2/3, 1− 2/3) = (1/3, 1/3, 1/3) < (1/2, 1/2, 1/2).
Thus Mc3,3(O, 3) is not an L­space.

8 Hyperbolic, L­space knots with tunnel number greater
than one

The purpose in this section is to exhibit infinitely many hyperbolic L­space knots
with tunnel number greater than one (Theorem 1.13). In [16] Eudave­Muñoz, Jasso
and Miyazaki and the author gave Seifert fibered surgeries which do not arise from
primitive/Seifert­fibered construction [10].

Let us take unknotted circles ca and cb in S3 − T3,2 as illustrated by Figure 8.1. Then
as shown in [16] {ca, cb} is a pair of seiferters for (T3,2, 7), i.e. ca and cb become
fibers simultaneously in some Seifert fibration of T3,2(7).

Note that the pair {ca, cb} forms the (4, 2)–torus link in S3 . Hence (−1)–twist along
ca converts ca∪cb into the (−4, 2)–torus link. Then we can successively apply 1–twist
along cb to obtain (4, 2)–torus link ca ∪ cb . We denote the images of ca, cb under
twistings along these components by the same symbols ca, cb , respectively.
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c
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Figure 8.1: {ca, cb} is a pair of seiferters for (T3,2, 7).

Let Kn,0 be a knot obtained from T3,2 after the sequence of twistings:

(ca, (−1)−twist) → (cb, 1−twist) → (ca, n−twist)

Then Kn,0 = K(2,−n, 1, 0) in [16, Proposition 4.11]. See Figure 8.2.

Similarly, let K0,n be a knot obtained from T3,2 after the sequence of twistings:

(ca, (−1)−twist) → (cb, n + 1−twist)

Then K0,n = K(2, 0, 1,−n) in [16, Proposition 4.11]. See Figure 8.2.

(T ,  7)

(K      , 100n+71)

b

n-twist

along c

n-twist

along ca

3, 2

(-1)-twist

along ca

b

1-twist

along c

(K      , 196n+71 )

{ {

n, 0

0, n

Figure 8.2: Seifert surgeries (Kn,0, 196n+ 71) and (K0,n, 100n+ 71); each vertex corresponds
to a Seifert surgery and each edge corresponds to a single twist along a seiferter.

Theorem 1.13 follows from Theorem 8.1 below.
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Theorem 8.1 (1) {Kn,0}n∈Z is a set of mutually distinct hyperbolic L­space knots
with tunnel number two.

(2) {K0,n}n∈Z\{−1} is a set of mutually distinct hyperbolic L­space knots with tunnel
number two.

Proof of Theorem 8.1. We begin by recalling the following result which is a combination
of Propositions 3.2, 3.7 and 3.11 in [16].

Lemma 8.2 (1) Kn,0 is a hyperbolic knot with tunnel number two, and Kn,0(196n+
71) is a Seifert fiber space S2((11n + 4)/(14n + 5), −2/7, 1/2).

(2) K0,n is a hyperbolic knot with tunnel number two if n ̸= −1, and K0,n(100n+71)
is a Seifert fiber space S2(−(3n + 2)/(10n + 7), 4/5, 1/2).

Lemma 8.3 (1) If Kn,0 and Kn′,0 are isotopic, then n = n′ .

(2) If K0,n and K0,n′ are isotopic, then n = n′ .

Proof of Lemma 8.3. (1) Suppose that Kn,0 is isotopic to Kn′,0 . Then Kn,0(196n +

71) and Kn,0(196n′ + 71) are both Seifert fiber spaces. Since Kn,0 is hyperbolic,
Theorem 1.2 in [32] implies that |196n + 71 − (196n′ + 71)| = |196(n − n′)| ≤ 8.
Hence we have n = n′ . (2) follows in a similar fashion. □(Lemma 8.3)

Let us prove that Kn,0 and K0,n are L­space knots for any integer n.

Lemma 8.4 (1) Kn,0(196n + 71) is an L­space for any integer n.

(2) K0,n(100n + 71) is an L­space for any integer n.

Proof of Lemma 8.4. (1) Note that Kn,0(196n+71) = S2((11n+4)/(14n+5), −2/7, 1/2) =
S2(−1, (11n + 4)/(14n + 5), 5/7, 1/2). Since 0 < (11n + 4)/(14n + 5) < 1 for any
n ∈ Z and 5/7 + 1/2 ≥ 1, Lemma 2.3(2) shows that Kn,0(196n + 71) is an L­space
for any integer n. This proves (1).

(2) As above first we note that K0,n(100n+71) = S2(−(3n+2)/(10n+7), 4/5, 1/2) =
S2(−1, (7n + 5)/(10n + 7), 4/5, 1/2). Since 0 < (7n + 5)/(10n + 7) < 1 for any
n ∈ Z and 4/5 + 1/2 ≥ 1, Lemma 2.3(2) shows that K0,n(100n + 71) is an L­space
for any integer n. □(Lemma 8.4)

Now Theorem 8.1 follows from Lemmas 8.2, 8.3 and 8.4. □(Theorem 8.1)

Question 8.5 Does there exist a hyperbolic L­space knot with tunnel number greater
than two? More generally, for a given integer p, does there exist a hyperbolic L­space
knot with tunnel number greater than p?
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9 Questions

9.1 Characterization of twistings which yield infinitely many L­space
knots.

For knots K with Seifert surgery (K,m), Theorems 1.4, 1.5, 1.6 and Corollary 1.7
characterize seiferters which enjoy the desired property in Question 1.1.

The next proposition, which is essentially shown in [25, 26], describes yet another
example of twistings which yield infinitely many L­space knots.

Proposition 9.1 (L­space twisted satellite knots) Let k be a nontrivial knot with
L­space surgery (k, 2g − 1), where g denotes the genus of k , and K a satellite knot of
k which lies in V = N(k) with winding number w. Suppose that V(K; m) is a solid
torus for some integer m ≥ w2(2g − 1). Let c be the boundary of a meridian disk of
V , and Kn a knot obtained from K by n–twist along c. Then Kn is an L­space knot
for any n ≥ 0. See Figure 9.1.

Proof of Proposition 9.1. Recall that Kn(m+ nw2) = k((m+ nw2)/w2) = k(m/w2 + n)
[20]. Since k(2g− 1) is an L­space and m/w2 ≥ 2g− 1, [48, Proposition 9.6] ensures
that k(m/w2 + n) is also an L­space if n ≥ 0. Hence Kn is an L­space knot provided
n ≥ 0. □(Proposition 9.1)

V

K

c

Figure 9.1: Kn is a knot obtained from K by n–twist along c .

Remark 9.2 (1) In Proposition 9.1, the knot K in the solid torus V is required to
have a cosmetic surgery: V(K; m) ∼= S1 ×D2 . The cosmetic surgery of the solid
torus is well­understood by [18, 5].

(2) Twisting operation described in Proposition 9.1 can be applied only for satellite
knots and resulting knots after the twistings are also satellite knots.
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(3) In Proposition 9.1, the knot k is assumed to be nontrivial. If k is a trivial knot
in S3 , then K(m) = (S3 − intV) ∪ V(K; m) is a lens space, hence (K,m) is an
L­space surgery. It is easy to see that c is a seiferter for (K,m).

For further possibility, weaken a condition of seiferter to obtain a notion of “pseudo­
seiferter" as follows.

Definition 9.3 (pseudo­seiferter) Let (K,m) be a Seifert surgery. A knot c in
S3 − N(K) is called a pseudo­seiferter for (K,m) if c satisfies (1) and (2) below.

(1) c is a trivial knot in S3 .

(2) c becomes a “cable" of a fiber in a Seifert fibration of K(m) and the preferred
longitude λ of c in S3 becomes the cabling slope of c in K(m).

We do not know if a pseudo­seiferter exists, but if (K,m) admits a pseudo­seiferter, it
behaves like a seiferter in the following sense. Let V be a fibered tubular neighborhood
of a fiber t and c is a cable in V . Then the result of a surgery (corresponding to
n–twist) on c of V is again a solid torus, and this surgery is reduced to a surgery on
the fiber t which is a core of V . Hence Kn(mn) is a (possibly degenerate) Seifert fiber
space. This suggests that a pseudo­seiferter is also a candidate for an unknotted circle
described in Question 1.1.

We would like to ask the following question for non­satellite knots.

Question 9.4 Let K be a non­satellite knot and Kn a knot obtained from K by n–twist
along an unknotted circle c in S3 − K . Suppose that the twist family {Kn} contains
infinitely many L­space knots.

(1) Does K admit a Seifert surgery (K,m) for which c is a seiferter?

(2) Does K admit a Seifert surgery (K,m) for which c is a seiferter or a pseudo­
seiferter?

9.2 L­space knots and strong invertibility.

A knot is said to be strongly invertible if there exists an orientation preserving involution
of S3 which fixes the knot setwise and reverses orientation. Known L­space knots are
strongly invertible, so it is natural to ask:
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Problem 9.5 (Watson) Are L­space knots strongly invertible?

In [13] an “asymmetric seiferter" defined below is essentially used to find Seifert fibered
sugary on knots with no symmetry.

Definition 9.6 (asymmetric seiferter) A seiferter c for a Seifert surgery (K,m) is
said to be symmetric if we have an orientation preserving diffeomorphism f : S3 → S3

of finite order with f (K) = K, f (c) = c; otherwise, c is called an asymmetric seiferter.

Combining [13, Theorem 7.3] and Theorem 1.4, we obtain:

Proposition 9.7 Let (K,m) be a Seifert fibered surgery on a non­satellite knot with
an asymmetric seiferter c which becomes an exceptional fiber. Suppose that Mc(K,m)
is an L­space. Then there is a constant N such that Kn , a knot obtained from K by
n–twist along c, is a hyperbolic L­space knot with no symmetry for any n ≤ N or
n ≥ N .

If c is a seiferter for (Tp,q, pq) which becomes a degenerate fiber in Tp,q(pq), then c is
a meridian of Tp,q or Tp,q ∪ c is a hyperbolic link in S3 ; see [13, Theorem 3.19(3)].
Hence the argument in the proof of Theorem 7.3 in [13] and Theorem 1.6(2) enable us
to show:

Proposition 9.8 If c is an asymmetric seiferter for (Tp,q, pq) which becomes a degen­
erate fiber in Tp,q(pq), then there is a constant N such that Kn is a hyperbolic L­space
knot with no symmetry for any n ≤ N or n ≥ N .

For the asymmetric seiferter c = c′1 for (K,m) = (P(−3, 3, 5), 1) given in [13,
Lemma 7.5], Mc(K,m) is not an L­space and c does not satisfy the hypothesis of
Proposition 9.7.

Question 9.9 Does there exist an asymmetric seiferter described in Propositions 9.7
and 9.8?
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