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Abstract

Greene has given an infinite family of non-quasi-alternating links Lm,n in which
L2,3 is homologically thin and its double branched cover X2,3 is an L-space. In
this note we show that the double branched cover Xm,n of Lm,n is an L-space
for all n > m ≥ 2 and Lm,n is the unique link whose double branched cover is
Xm,n.
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1. Introduction

Let M be a rational homology 3–sphere. Then its Heegaard Floer homol-
ogy ĤF(M) introduced by Ozsváth and Szabó [28, 29] satisfies rkĤF(M) ≥
|H1(M ;Z)|. If the equality holds, i.e. ĤF(M) = |H1(M ;Z)|, then we call M an
L-space [30].

Ozsváth and Szabó [31, Lemma 3.2, Proposition 3.3] have shown that the
double branched cover of any non-split alternating link, more generally quasi-
alternating link, is an L-space. The set Q of quasi-alternating links is the
smallest set of links containing the trivial knot, and closed under the following
relation: if L admits a projection with distinguished crossing for which the two
resolutions L0 and L1 belong to Q, and det(L) = det(L0) + det(L1), then L
belongs to Q.

In [8] Greene gave an infinite family of non-quasi-alternating links Lm,n

(2 ≤ m < n); see Section 4 for the definition of Lm,n. The simplest one L2,3
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is homologically thin as computed by [1, 32], hence this gives the first example
of homologically thin, non-quasi-alternating link. Moreover, X2,3 is the first
example of the L-space which is the double branched cover of (S3 branched
along) a non-quasi-alternating link ([11, Proposition 11] where X2,3 = M0).
So it is interesting to ask: is X2,3 a double branched cover of S3 branched
along another link which is quasi-alternating? Actually the four-dimensional
argument in the proof of [8, Theorem 1.3] proves the following:

Theorem 1.1 ([8]). The L-space X2,3 is a double branched cover of a non
quasi-alternating knot L2,3; furthermore if the double-branched cover of a link
L is homeomorphic to X2,3, then L is not quasi-alternating neither.

We will focus on the uniqueness of such a link as L2,3. As mentioned in [8,
Section 3], Lm,n may not be homologically thin in general. Our purpose in this
note is to show:

Theorem 1.2. Let Xm,n be the double branched cover of Lm,n. Then Xm,n is
an L-space for any n > m ≥ 2, and the non-quasi-alternating link Lm,n is the
unique link whose double branched cover is homeomorphic to Xm,n.

Question 1.3. Let M be an atoroidal L-space which is the double branched
cover of a link L. Then is L the unique link whose double branched cover is
homeomorphic to M?

It should be mentioned here that Greene [9] proves that if L and L′ are al-
ternating links and their double branched covers are homeomorphic, then they
are mutants. However, there exist pairs of non-mutant, non-alternating links
whose double branched covers are homeomorphic. For instance, the pretzel knot
P (−2, 3, 7) and the torus knot T3,7 are not mutant, but they give the same dou-
bled branched cover S2(−1/2, 1/3, 1/7) ([2, 33]). Note that S2(−1/2, 1/3, 1/7)
is not an L-space. Greene [10, Conjecture 1.5] conjectures that if a pair of links
have the same double branched cover, then either both are alternating or both
are non-alternating.

In [11], Greene and Watson gave further examples of homologically thin,
non-quasi-alternating knots. Moreover, recently Duffield, Hoffman and Licata
[5] have given an infinite family of hyperbolic L-spaces each of which has no
symmetry, and none of them cannot be obtained by double branched cover of
any link.

2. Tangles and Montesinos links

A tangle (B, t) is a pair of a 3–ball B and two disjoint arcs t properly
embedded in B. We say that a tangle (B, t) is trivial if there is a pairwise
homeomorphism from (B, t) to (D2 × I, {x1, x2} × I), where x1, x2 are distinct
points. Two tangles (B, t) and (B, t′) with ∂t = ∂t′ are equivalent if there is a
pairwise homeomorphism h : (B, t) → (B, t′) which is the identity on ∂B.
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Let U be the unit 3-ball in R3, and take 4 points NW, NE, SE, SW on the
boundary of U so that NW = (0,−α, α),NE = (0, α, α), SE = (0, α,−α), SW =
(0,−α,−α), where α = 1√

2
. A tangle (U, t) (∂t = {NW,NE,SE, SW}) is ratio-

nal if it is a trivial tangle. It should be noted that a rational tangle is invariant
under mutations, i.e. the π–rotations along x–, y–, and z–axis. Any rational
tangle can be constructed from a sequence of integers a1, a2, . . . , an as shown in
Figure 2.1, where the last horizontal twist an may be 0.
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an

a1 a2

a3
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(i) n is odd                                                     (ii) n is even 

1 -1

Figure 2.1: Rational tangles.

Each rational tangle can be isotoped into a position given by Figure 2.1,
and parametrized by r ∈ Q∪ {∞}, where the rational number r is given by the
continued fraction below. Thus it is convenient to denote the rational tangle
corresponding to r by R(r).

r = an +
1

an−1 +
1

. . .
a2 +

1

a1

A Montesinos link M(β1/α1, · · · , βk/αk) is a link which has a diagram
in Figure 2.2(i), where each βi/αi (αi ≥ 2) corresponds to a rational tan-
gle R(βi/αi) as in Figure 2.1. Let M be the double branched cover of S3

branched along M(β1/α1, · · · , βk/αk). Then M admits a Seifert fibration over
S2 such that the preimage of the 3–ball Bi, where R(βi/αi) = (Bi, ti), is
a fibered solid torus whose core has a Seifert invariant βi/αi and index αi.
Hence M = S2(β1/α1, · · · , βk/αk); see [21]. We can isotope the Montesinos
link M(β1/α1, · · · , βk/αk) to a Montesinos link with diagram in Figure 2.2(ii),
where the left most box in (ii) is an integral tangle R(b) and β′

i/αi satisfies
0 < β′

i/αi < 1 for i = 1, . . . , k. Thus the Montesinos link M(β1/α1, · · · , βk/αk)
can be also expressed as M(b;β′

1/α1, · · · , β′
k/αk). Correspondingly M may be

expressed as S2(b;β′
1/α1, · · · , β′

k/αk).
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Figure 2.2: Montesinos link

Remark 2.1. In general, the order of βi/αi is irrelevant for a Seifert fiber space
S2(β1/α1, · · · , βk/αk), but it is relevant for a Montesinos link M(β1/α1, · · · , βk/αk).
On the other hand, in the case where k ≤ 3 the order of βi/αi is irrelevant for
M(β1/α1, β2/α2, β3/α3); see Claim 3.5.

3. Seifert fiber spaces with unique double branched covering

Hodgson and Rubinstein have shown that a lens space is the double branched
cover of a unique link in S3, and this link is a two–bridge link [13, Corollary
4.12]. Furthermore, it is known that spherical Seifert fiber space is the double
branched cover of a unique link in S3, which is a Montesinos link [17, 21]. On
the other hand, as we mentioned in Section 1, a Seifert fiber space M (with
infinite fundamental group) may be double branched covers of two non-isotopic
links L1 and L2; one of them is not a Montesinos link. The goal in this section is
to prove the following theorem, in which, without loss of generality, we assume
2 ≤ α1 ≤ α2 ≤ α3 (Remark 2.1). We denote the greatest common divisor of
two integers p, q by (p, q).

Theorem 3.1. Let M be a Seifert fiber space S2(β1/α1, β2/α2, β3/α3) which
satisfies one of the following.

(1) α1 > 2, and βi/αi ̸≡ βj/αj mod1 for i ̸= j.
(2) α1 = 2, β2/α2 ̸≡ β3/α3 mod1, and (α2, α3) > 2.

If the double branched cover of a link L ⊂ S3 is homeomorphic to M , then
L is isotopic to a Montesinos link M(β1/α1, β2/α2, β3/α3).

Remark 3.2. Let M be a Seifert fiber space S2(−1/2, 1/3, 1/7). Then M does
not satisfy neither (1) nor (2) in Theorem 3.1, and it is the double branched
cover of the pretzel knot P (−2, 3, 7) and that of the torus knot T3,7; see [2, 33].

3.1. Double-branched covers and small Seifert fiber spaces

A link in S3 is called an extended torus link if it is a union of fibers (possibly
including exceptional fibers) in some Seifert fibration of S3; see Figure 3.1(i).
An extended torus link is a Seifert link, i.e. a link whose exterior is Seifert
fibered, but the converse is not true. The link given by (ii) in Figure 3.1 is a
Seifert link, but not an extended torus link.

Although the following result may be known to experts, for completeness,
we will give a proof here.
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Figure 3.1: Extended torus link and Seifert link

Proposition 3.3. Let M be a Seifert fiber space S2(r1, r2, r3) with infinite fun-
damental group. If the double branched cover of a link L ⊂ S3 is homeomorphic
to M , then L is either a Montesinos link M(r1, r2, r3) or an extended torus link.

Proof. Let us put L = k1 ∪ · · · ∪ kn. Let φ : M → S3 be the double branched
covering branched along L, and g : M → M an involution satisfying φ ◦ g = φ;

Fix(g) = L̃ = k̃1 ∪ · · · ∪ k̃n.

Lemma 3.4. M has a ⟨g⟩–invariant Seifert fibration.

Proof. Let H be an infinite cyclic normal subgroup of π1(M) generated by a
regular fiber. Then we see that ⟨g⟩ preserves H, because Seifert fibration of M
is unique up to isotopy [15, Corollary 3.12]. It follows from [19, Theorem 2.2]
that we can choose a ⟨g⟩–invariant Seifert fibration of M . □(Lemma 3.4)

By Lemma 3.4 we choose a Seifert fibration of M which is preserved by ⟨g⟩
so that we obtain an isomorphism ĝ on the base orbifold B which commutes
with the Seifert fibration π : M → B. Since M is not a prism manifold, it is
sufficient to consider the case where the underlying space |B| of B is S2.

Case (1). If ĝ preserves the orientation of |B| = S2, then Lemma 3.2 (1) in [22]
shows that Fix(g) consists of fibers in M . Furthermore, the image of each fiber
in M by the branched covering φ : M → S3 is a circle, thus the Seifert fibration
F of M induces a Seifert fibration F/⟨g⟩ of S3 so that φ is fiber preserving. It
should be noted here that if g(t) = t for a fiber t in M , since ĝ preserves the
orientation of |B| = S2, g preserves also an orientation of t, i.e. g : t → t is a

rotation. Hence L = L̃/⟨g⟩ consists of fibers of the induced Seifert fibration of
S3 = M/⟨g⟩, and L is an extended torus link. For details, see the argument in
the proof of Lemma 5.2 in [22]. We note that L is a non-split, prime link, because
its double branched cover is a small Seifert fiber space, which is irreducible.

Case (2). Assume that ĝ reverses the orientation of |B| = S2. Since Fix(g) ̸= ∅,
Fix(ĝ) ̸= ∅. Thus ĝ is a reflection of S2 with Fix(ĝ) ∼= S1. Suppose that
S2 − Fix(ĝ) contains cone points. Then as shown in the proof of Lemma 2.4 in
[20], M/⟨g⟩ = S3 would be a lens space ( ̸= S3, S2×S1) or a nontrivial connected
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sum of lens spaces, a contradiction. Hence every cone point, i.e. π(exceptional
fiber), lies on Fix(ĝ) ∼= S1. Apply the proof of Lemma 2.5 in [20, Section 2] to

show that L = L̃/⟨g⟩ is a Montesinos link with n components. Since the double
branched cover of L is a small Seifert fiber space, L has at most three branches
(i.e. rational tangles). This then implies that L has at most three components,
i.e. n ≤ 3.

It remains to show that L is isotopic to M(r1, r2, r3). Let us assume that
L = M(r′1, r

′
2, r

′
3). Then S2(r′1, r

′
2, r

′
3) is orientation preservingly homeomor-

phic to S2(r1, r2, r3). Since they have unique Seifert fibration up to isotopy
[15, Corollary 3.12], Proposition 2.1 in [12] ([25, 27]) shows that we have a
permutation σ of {1, 2, 3} such that r′σ(i) ≡ ri mod 1 and Σ3

i=1ri = Σ3
i=1r

′
i.

Claim 3.5. M(r′1, r
′
2, r

′
3) is isotopic to M(r′σ(1), r

′
σ(2), r

′
σ(3)).

Proof. If σ is a cyclic permutation, the result follows obviously. Every trans-
position can be realized by the π–rotation as in Figure 3.2(ii) and mutations of
rational tangles (Figure 3.2(iii)) after a suitable cyclic permutation.

r’ r’ r’1                      2                     3
r’ r’ r’

1                      2                     3

=

rotation

r’ r’ r’3                      2                     1

(i)                                                                                   (ii)

(iii)

Figure 3.2: Transposition of rational tangles

□(Claim 3.5)

Claim 3.6. M(r′σ(1), r
′
σ(2), r

′
σ(3)) is isotopic to M(r1, r2, r3).

Proof. Let us write r′σ(i) = ri + mi for some integer mi. Since Σ3
i=1r

′
σ(i) =

Σ3
i=1r

′
i = Σ3

i=1ri, we have Σ3
i=1mi = 0. Apply a flype as shown in Figure 3.3,

we isotope M(r′σ(1), r
′
σ(2), r

′
σ(3)) to M(r1, r

′
σ(2) +m1, r

′
σ(3)). Note that if mi is

odd, we apply a mutation to get the position as in Figure 3.3.
After a sequence of flypes M(r′σ(1), r

′
σ(2), r

′
σ(3)) is isotoped to M(r1, r2, r3 +

m1 +m2 +m3) which coincides with M(r1, r2, r3), because m1 +m2 +m3 = 0.
□(Claim 3.6)
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Figure 3.3: Flype

Thus L = M(r′1, r
′
2, r

′
3) is isotopic to M(r1, r2, r3). This completes a proof

of Proposition 3.3. □(Proposition 3.3)

3.2. Proof of Theorem 3.1

Let M be a small Seifert fiber space S2(β1/α1, β2/α2, β3/α3) with 2 ≤ α1 ≤
α2 ≤ α3. IfM is spherical (i.e. π1(M) is finite), then L = M(β1/α1, β2/α2, β3/α3)
is the unique link whose double branched cover is homeomorphic to M [13, 17,
21]. So in the following we assume M is not spherical, i.e. it has infinite fun-
damental group. It follows from Proposition 3.3 that L is a Montesinos link
M(β1/α1, β2/α2, β3/α3) or an extended torus link. In the following, under the
assumption of Theorem 3.1, we exclude the latter possibility.

Let φ : M → S3 be the branched covering projection and g : M → M the
involution satisfying φ◦g = φ as in the proof of Proposition 3.3. Then following
the proof of Proposition 3.3, we see that g : M → M preserves a Seifert fibration
F , and S3 = M/⟨g⟩ has a Seifert fibration F/⟨g⟩ so that φ sends a fiber in F to
a fiber in F/⟨g⟩. The lemma below describes the relationship between indices
of fibers t̃ in F and t = φ(t̃) in F/⟨g⟩. For the proof, see [22, Lemma 5.3].

Lemma 3.7. Let t̃ be a fiber of F which covers a fiber t of F/⟨g⟩, i.e. φ(t̃) = t.
Then we have:

• If g(t̃) ̸= t̃, then index(t̃) = index(t).

• If g(t̃) = t̃ and g|t̃ : t̃ → t̃ is a rotation, then index(t̃) is either index(t) or
index(t)/2.

• If g(t̃) = t̃ and g|t̃ : t̃ → t̃ is the identity map, then index(t̃) is either
index(t) or 2index(t).

Let t̃i be an exceptional fiber in M whose Seifert invariant βi/αi (1 ≤ i ≤ 3).
Then in the first case we have the following.

Lemma 3.8. If two exceptional fibers, say t̃1 and t̃2, cover the same exceptional
fiber t in S3, then β1/α1 ≡ β2/α2 mod 1.
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Proof. Let S be a section of X = M −
∪3

i=1 intN(t̃i), where N(t̃i) is a fibered

tubular neighborhood of t̃i. Let µi be a meridian of N(t̃i) and τi a regular
fiber on ∂N(t̃i). Orient τi so that τ1, τ2 and τ3 are mutually homologous in
X and τi = αit̃i (αi ≥ 2). Choose orientation of si = S ∩ ∂N(t̃i) so that the
algebraic intersection number ⟨si, τi⟩ between si and τi is +1. Finally choose
an orientation of µi so that the linking number between µi and t̃i is +1. Then
µi = αisi + βiτi. Since g : M → M and ĝ : B → B preserve orientations,
g(τ1) = τ2, g(µ1) = µ2. Note that g(s1) = s2 + xτ2 for some integer x. Then
µ2 = g(µ1) = g(α1s1 + β1τ1) = α1g(s1) + β1g(τ1) = α1(s2 + xτ2) + β1τ2 =
α1s2 + (α1x + β1)τ2. This shows that β2/α2 = (β1 + xα1)/α1 = β1/α1 + x.
Hence β2/α2 ≡ β1/α1 mod 1. □(Lemma 3.8)

Claim 3.9. If α1 > 2 and βi/αi ̸≡ βj/αj mod1 for i ̸= j, then L is not an
extended torus link.

Proof. Since βi/αi ̸≡ βj/αj mod1 if i ̸= j, Lemma 3.8 shows that there is
not a pair of exceptional fibers which cover the same exceptional fiber. Since
M contains three exceptional fibers and for any Seifert fibration of S3 there are
at most two exceptional fibers, there exists an exceptional fiber t̃ in M which
covers a regular fiber in S3. Then the index of t̃ is 2 by Lemma 3.7. This
contradicts the assumption. □(Claim 3.9)

Claim 3.10. If α1 = 2, β2/α2 ̸≡ β3/α3 mod1, and (α2, α3) > 2, then L is not
an extended torus link.

Proof. Note that α2 = index(t̃2) ≥ 3 and α3 = index(t̃2) ≥ 3, for oth-
erwise, S2(β1/α1, β2/α2, β3/α3) is spherical. Hence by Lemma 3.7 t̃2 and t̃3
cover exceptional fibers t2 and t3, respectively. Since β2/α2 ̸≡ β3/α3 mod 1,
Lemma 3.8 shows that t2 ̸= t3. Then index(t2) and index(t3) are relatively
prime. By Lemma 3.7 αi is one of index(ti), index(ti)/2 or 2index(ti). Since
(index(t2), index(t3)) = 1, (α2, α3) ≤ 2. This contradicts the assumption.

□(Claim 3.10)

Thus L cannot be an extended torus link, and L = M(β1/α1, β2/α2, β3/α3).
□(Theorem 3.1)

Some Montesinos links are simultaneously extended torus links. In [16]
Kawauchi determines pretzel knots whose double branched covers are home-
omorphic to those of torus knots, and applies this to determine pretzel knots
which are also torus knots. Bonahon and Siebenmann [3] completely determine
Montesinos links which are also extended torus links. In its proof they analyze
a Seifert fibration which is the lift of a Seifert fibration of S3. We can also apply
their arguments to show Claims 3.9 and 3.10.
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4. Proof of Theorem 1.2

Let Lm,n be a Montesinos link M(m/(m2 + 1), 1/n,−m/(m2 + 1)), where
m,n ≥ 2. The double branched cover of S3 branched along Lm,n is a small
Seifert fiber space Xm,n = S2(m/(m2 + 1), 1/n,−m/(m2 + 1)). It is shown by
[8, Theorem 1.3] that L2,3 = M(2/5, 1/3,−2/5) is not quasi-alternating. More
generally, as mentioned in [8, Subsection 3.2], we have:

Lemma 4.1 ([8]). The Montesinos link Lm,n is not quasi-alternating for all
n > m ≥ 2.

Recall that the double branched cover X2,3 of S3 branched along the non-
quasi-alternating link L2,3 is an L-space; see [11, Proposition 11] where X2,3 =
M0. Now let us show that Xm,n is an L-space for all n > m ≥ 2.

Lisca and Stipsicz [18] have shown that a Seifert fiber space M over S2 is
an L-space if and only if M does not admit a horizontal foliation. Furthermore,
the combined work [6, 14, 24] classifies Seifert fiber space admitting horizon-
tal foliations in terms of their Seifert invariants. Summarizing them we have
Proposition 4.2 below, which is quoted from [4, Theorem 5.4].

For ordered triples (a1, a2, a3) and (b1, b2, b3), we write (a1, a2, a3) < (b1, b2, b3)
if ai < bi for 1 ≤ i ≤ 3.

Proposition 4.2. A Seifert fiber space S2(b, r1, r2, r3) (0 < r1 ≤ r2 ≤ r3 < 1)
is an L-space if and only if one of the following holds.

(1) b ≥ 0 or b ≤ −3.

(2) b = −1 and there is no relatively prime integers 0 < a ≤ k/2 such that
(r1, r2, r3) < (1/k, a/k, (k − a)/k).

(3) b = −2 and there is no relatively prime integers 0 < a ≤ k/2 such that
(1− r3, 1− r2, 1− r1) < (1/k, a/k, (k − a)/k).

Using this criterion, we have:

Lemma 4.3. Xm,n is an L-space for all n > m ≥ 2.

Proof. Recall that Xm,n = S2(m/(m2 + 1), 1/n, −m/(m2 + 1)), which can
be expressed as S2(−1, m/(m2+1), 1/n, 1−m/(m2+1)). Since 0 < m/(m2+
1), 1/n, 1−m/(m2+1) < 1 and m/(m2+1)+(1−m/(m2+1)) = 1, Lemma 2.3
in [23] shows that Xm,n is an L-space for all n > m ≥ 2. □(Lemma 4.3)

Lemma 4.4. The non-quasi-alternating link Lm,n is the unique link whose dou-
ble branched cover is homeomorphic to Xm,n.

Proof. Since n > m ≥ 2, we see that m2+1, n > 2, m/(m2+1) ̸≡ −m/(m2+
1) mod 1, and ±m/(m2 + 1) ̸≡ 1/n mod 1. It follows from Theorem 3.1 that
Lm,n is the unique link whose double branched cover is homeomorphic to Xm,n.
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□(Lemma 4.4)

Now Theorem 1.2 follows from Lemmas 4.3 and 4.4.

In [26] Núñez and Ramı́rez-Losada have computed Seifert invariants of branched
covers of torus knots explicitly, and Gordon and Lidman [7] classify branched
covers of torus knots yielding L-spaces.

Acknowledgements – I would like to thank Akio Kawauchi for pointing
out that an analysis given by Bonahon and Siebenmann [3] can be used to show
Claims 3.9 and 3.10, and thank Masakazu Teragaito for helpful conversations.
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