A note on L-spaces which are double branched covers of non-quasi-alternating links

Kimihiko Motegi*

Department of Mathematics, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

Dedicated to Taizo Kanenobu, Yasutaka Nakanishi, and Makoto Sakuma for their 60th birthdays

Abstract

Greene has given an infinite family of non-quasi-alternating links $L_{m,n}$ in which $L_{2,3}$ is homologically thin and its double branched cover $X_{2,3}$ is an L-space. In this note we show that the double branched cover $X_{m,n}$ of $L_{m,n}$ is an L-space for all $n > m \ge 2$ and $L_{m,n}$ is the unique link whose double branched cover is $X_{m,n}$.

Keywords: L-space, branched covering, Seifert fiber space, Montesinos links, extended torus links 2000 MSC: Primary 57M12, 57M25

1. Introduction

Let M be a rational homology 3–sphere. Then its Heegaard Floer homology $\widehat{\mathrm{HF}}(M)$ introduced by Ozsváth and Szabó [28, 29] satisfies $\mathrm{rk}\widehat{\mathrm{HF}}(M) \geq |H_1(M;\mathbb{Z})|$. If the equality holds, i.e. $\widehat{\mathrm{HF}}(M) = |H_1(M;\mathbb{Z})|$, then we call M an L-space [30].

Ozsváth and Szabó [31, Lemma 3.2, Proposition 3.3] have shown that the double branched cover of any non-split alternating link, more generally quasialternating link, is an L-space. The set Q of quasi-alternating links is the smallest set of links containing the trivial knot, and closed under the following relation: if L admits a projection with distinguished crossing for which the two resolutions L_0 and L_1 belong to Q, and $\det(L) = \det(L_0) + \det(L_1)$, then L belongs to Q.

In [8] Greene gave an infinite family of non-quasi-alternating links $L_{m,n}$ $(2 \leq m < n)$; see Section 4 for the definition of $L_{m,n}$. The simplest one $L_{2,3}$

 $Preprint\ submitted\ to\ Elsevier$

March 24, 2016

 $^{^{*}}$ Corresponding author

Email address: motegi@math.chs.nihon-u.ac.jp (Kimihiko Motegi)

is homologically thin as computed by [1, 32], hence this gives the first example of homologically thin, non-quasi-alternating link. Moreover, $X_{2,3}$ is the first example of the L-space which is the double branched cover of $(S^3$ branched along) a non-quasi-alternating link ([11, Proposition 11] where $X_{2,3} = M_0$). So it is interesting to ask: is $X_{2,3}$ a double branched cover of S^3 branched along another link which is quasi-alternating? Actually the four-dimensional argument in the proof of [8, Theorem 1.3] proves the following:

Theorem 1.1 ([8]). The L-space $X_{2,3}$ is a double branched cover of a non quasi-alternating knot $L_{2,3}$; furthermore if the double-branched cover of a link L is homeomorphic to $X_{2,3}$, then L is not quasi-alternating neither.

We will focus on the uniqueness of such a link as $L_{2,3}$. As mentioned in [8, Section 3], $L_{m,n}$ may not be homologically thin in general. Our purpose in this note is to show:

Theorem 1.2. Let $X_{m,n}$ be the double branched cover of $L_{m,n}$. Then $X_{m,n}$ is an L-space for any $n > m \ge 2$, and the non-quasi-alternating link $L_{m,n}$ is the unique link whose double branched cover is homeomorphic to $X_{m,n}$.

Question 1.3. Let M be an atoroidal L-space which is the double branched cover of a link L. Then is L the unique link whose double branched cover is homeomorphic to M?

It should be mentioned here that Greene [9] proves that if L and L' are alternating links and their double branched covers are homeomorphic, then they are mutants. However, there exist pairs of non-mutant, non-alternating links whose double branched covers are homeomorphic. For instance, the pretzel knot P(-2, 3, 7) and the torus knot $T_{3,7}$ are not mutant, but they give the same doubled branched cover $S^2(-1/2, 1/3, 1/7)$ ([2, 33]). Note that $S^2(-1/2, 1/3, 1/7)$ is not an L-space. Greene [10, Conjecture 1.5] conjectures that if a pair of links have the same double branched cover, then either both are alternating or both are non-alternating.

In [11], Greene and Watson gave further examples of homologically thin, non-quasi-alternating knots. Moreover, recently Duffield, Hoffman and Licata [5] have given an infinite family of hyperbolic L-spaces each of which has no symmetry, and none of them cannot be obtained by double branched cover of any link.

2. Tangles and Montesinos links

A tangle (B,t) is a pair of a 3-ball B and two disjoint arcs t properly embedded in B. We say that a tangle (B,t) is *trivial* if there is a pairwise homeomorphism from (B,t) to $(D^2 \times I, \{x_1, x_2\} \times I)$, where x_1, x_2 are distinct points. Two tangles (B,t) and (B,t') with $\partial t = \partial t'$ are *equivalent* if there is a pairwise homeomorphism $h: (B,t) \to (B,t')$ which is the identity on ∂B . Let U be the unit 3-ball in \mathbb{R}^3 , and take 4 points NW, NE, SE, SW on the boundary of U so that NW = $(0, -\alpha, \alpha)$, NE = $(0, \alpha, \alpha)$, SE = $(0, \alpha, -\alpha)$, SW = $(0, -\alpha, -\alpha)$, where $\alpha = \frac{1}{\sqrt{2}}$. A tangle (U, t) ($\partial t = \{\text{NW}, \text{NE}, \text{SE}, \text{SW}\}$) is *rational* if it is a trivial tangle. It should be noted that a rational tangle is invariant under mutations, i.e. the π -rotations along x-, y-, and z-axis. Any rational tangle can be constructed from a sequence of integers a_1, a_2, \ldots, a_n as shown in Figure 2.1, where the last horizontal twist a_n may be 0.

Figure 2.1: Rational tangles.

Each rational tangle can be isotoped into a position given by Figure 2.1, and parametrized by $r \in \mathbb{Q} \cup \{\infty\}$, where the rational number r is given by the continued fraction below. Thus it is convenient to denote the rational tangle corresponding to r by R(r).

$$r = a_n + \frac{1}{a_{n-1} + \frac{1}{a_2 + \frac{1}{a_1}}}$$

A Montesinos link $\mathcal{M}(\beta_1/\alpha_1, \dots, \beta_k/\alpha_k)$ is a link which has a diagram in Figure 2.2(i), where each β_i/α_i ($\alpha_i \geq 2$) corresponds to a rational tangle $R(\beta_i/\alpha_i)$ as in Figure 2.1. Let M be the double branched cover of S^3 branched along $\mathcal{M}(\beta_1/\alpha_1, \dots, \beta_k/\alpha_k)$. Then M admits a Seifert fibration over S^2 such that the preimage of the 3-ball B_i , where $R(\beta_i/\alpha_i) = (B_i, t_i)$, is a fibered solid torus whose core has a Seifert invariant β_i/α_i and index α_i . Hence $M = S^2(\beta_1/\alpha_1, \dots, \beta_k/\alpha_k)$; see [21]. We can isotope the Montesinos link $\mathcal{M}(\beta_1/\alpha_1, \dots, \beta_k/\alpha_k)$ to a Montesinos link with diagram in Figure 2.2(ii), where the left most box in (ii) is an integral tangle R(b) and β'_i/α_i satisfies $0 < \beta'_i/\alpha_i < 1$ for $i = 1, \dots, k$. Thus the Montesinos link $\mathcal{M}(\beta_1/\alpha_1, \dots, \beta_k/\alpha_k)$ can be also expressed as $\mathcal{M}(b; \beta'_1/\alpha_1, \dots, \beta'_k/\alpha_k)$. Correspondingly M may be expressed as $S^2(b; \beta'_1/\alpha_1, \dots, \beta'_k/\alpha_k)$.

Figure 2.2: Montesinos link

Remark 2.1. In general, the order of β_i/α_i is irrelevant for a Seifert fiber space $S^2(\beta_1/\alpha_1, \cdots, \beta_k/\alpha_k)$, but it is relevant for a Montesinos link $\mathcal{M}(\beta_1/\alpha_1, \cdots, \beta_k/\alpha_k)$. On the other hand, in the case where $k \leq 3$ the order of β_i/α_i is irrelevant for $\mathcal{M}(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$; see Claim 3.5.

3. Seifert fiber spaces with unique double branched covering

Hodgson and Rubinstein have shown that a lens space is the double branched cover of a unique link in S^3 , and this link is a two-bridge link [13, Corollary 4.12]. Furthermore, it is known that spherical Seifert fiber space is the double branched cover of a unique link in S^3 , which is a Montesinos link [17, 21]. On the other hand, as we mentioned in Section 1, a Seifert fiber space M (with infinite fundamental group) may be double branched covers of two non-isotopic links L_1 and L_2 ; one of them is not a Montesinos link. The goal in this section is to prove the following theorem, in which, without loss of generality, we assume $2 \le \alpha_1 \le \alpha_2 \le \alpha_3$ (Remark 2.1). We denote the greatest common divisor of two integers p, q by (p, q).

Theorem 3.1. Let M be a Seifert fiber space $S^2(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$ which satisfies one of the following.

- (1) $\alpha_1 > 2$, and $\beta_i / \alpha_i \not\equiv \beta_j / \alpha_j \mod 1$ for $i \neq j$.
- (2) $\alpha_1 = 2, \ \beta_2/\alpha_2 \not\equiv \beta_3/\alpha_3 \mod 1, \ and \ (\alpha_2, \alpha_3) > 2.$

If the double branched cover of a link $L \subset S^3$ is homeomorphic to M, then L is isotopic to a Montesinos link $\mathcal{M}(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$.

Remark 3.2. Let M be a Seifert fiber space $S^2(-1/2, 1/3, 1/7)$. Then M does not satisfy neither (1) nor (2) in Theorem 3.1, and it is the double branched cover of the pretzel knot P(-2, 3, 7) and that of the torus knot $T_{3,7}$; see [2, 33].

3.1. Double-branched covers and small Seifert fiber spaces

A link in S^3 is called an *extended torus link* if it is a union of fibers (possibly including exceptional fibers) in some Seifert fibration of S^3 ; see Figure 3.1(i). An extended torus link is a Seifert link, i.e. a link whose exterior is Seifert fibered, but the converse is not true. The link given by (ii) in Figure 3.1 is a Seifert link, but not an extended torus link.

Although the following result may be known to experts, for completeness, we will give a proof here.

Figure 3.1: Extended torus link and Seifert link

Proposition 3.3. Let M be a Seifert fiber space $S^2(r_1, r_2, r_3)$ with infinite fundamental group. If the double branched cover of a link $L \subset S^3$ is homeomorphic to M, then L is either a Montesinos link $\mathcal{M}(r_1, r_2, r_3)$ or an extended torus link.

PROOF. Let us put $L = k_1 \cup \cdots \cup k_n$. Let $\varphi : M \to S^3$ be the double branched covering branched along L, and $g : M \to M$ an involution satisfying $\varphi \circ g = \varphi$; $\operatorname{Fix}(g) = \widetilde{L} = \widetilde{k_1} \cup \cdots \cup \widetilde{k_n}$.

Lemma 3.4. *M* has a $\langle g \rangle$ -invariant Seifert fibration.

PROOF. Let H be an infinite cyclic normal subgroup of $\pi_1(M)$ generated by a regular fiber. Then we see that $\langle g \rangle$ preserves H, because Seifert fibration of M is unique up to isotopy [15, Corollary 3.12]. It follows from [19, Theorem 2.2] that we can choose a $\langle g \rangle$ -invariant Seifert fibration of M. \Box (Lemma 3.4)

By Lemma 3.4 we choose a Seifert fibration of M which is preserved by $\langle g \rangle$ so that we obtain an isomorphism \hat{g} on the base orbifold B which commutes with the Seifert fibration $\pi : M \to B$. Since M is not a prism manifold, it is sufficient to consider the case where the underlying space |B| of B is S^2 .

Case (1). If \hat{g} preserves the orientation of $|B| = S^2$, then Lemma 3.2 (1) in [22] shows that Fix(g) consists of fibers in M. Furthermore, the image of each fiber in M by the branched covering $\varphi: M \to S^3$ is a circle, thus the Seifert fibration \mathcal{F} of M induces a Seifert fibration $\mathcal{F}/\langle g \rangle$ of S^3 so that φ is fiber preserving. It should be noted here that if g(t) = t for a fiber t in M, since \hat{g} preserves the orientation of $|B| = S^2$, g preserves also an orientation of t, i.e. $g: t \to t$ is a rotation. Hence $L = \tilde{L}/\langle g \rangle$ consists of fibers of the induced Seifert fibration of $S^3 = M/\langle g \rangle$, and L is an extended torus link. For details, see the argument in the proof of Lemma 5.2 in [22]. We note that L is a non-split, prime link, because its double branched cover is a small Seifert fiber space, which is irreducible.

Case (2). Assume that \widehat{g} reverses the orientation of $|B| = S^2$. Since $\operatorname{Fix}(g) \neq \emptyset$, $\operatorname{Fix}(\widehat{g}) \neq \emptyset$. Thus \widehat{g} is a reflection of S^2 with $\operatorname{Fix}(\widehat{g}) \cong S^1$. Suppose that $S^2 - \operatorname{Fix}(\widehat{g})$ contains cone points. Then as shown in the proof of Lemma 2.4 in [20], $M/\langle g \rangle = S^3$ would be a lens space ($\neq S^3, S^2 \times S^1$) or a nontrivial connected

sum of lens spaces, a contradiction. Hence every cone point, i.e. π (exceptional fiber), lies on $\operatorname{Fix}(\widehat{g}) \cong S^1$. Apply the proof of Lemma 2.5 in [20, Section 2] to show that $L = \widetilde{L}/\langle g \rangle$ is a Montesinos link with *n* components. Since the double branched cover of *L* is a small Seifert fiber space, *L* has at most three branches (i.e. rational tangles). This then implies that *L* has at most three components, i.e. $n \leq 3$.

It remains to show that L is isotopic to $\mathcal{M}(r_1, r_2, r_3)$. Let us assume that $L = \mathcal{M}(r'_1, r'_2, r'_3)$. Then $S^2(r'_1, r'_2, r'_3)$ is orientation preservingly homeomorphic to $S^2(r_1, r_2, r_3)$. Since they have unique Seifert fibration up to isotopy [15, Corollary 3.12], Proposition 2.1 in [12] ([25, 27]) shows that we have a permutation σ of $\{1, 2, 3\}$ such that $r'_{\sigma(i)} \equiv r_i \mod 1$ and $\sum_{i=1}^3 r_i = \sum_{i=1}^3 r'_i$.

Claim 3.5. $\mathcal{M}(r'_1, r'_2, r'_3)$ is isotopic to $\mathcal{M}(r'_{\sigma(1)}, r'_{\sigma(2)}, r'_{\sigma(3)})$.

PROOF. If σ is a cyclic permutation, the result follows obviously. Every transposition can be realized by the π -rotation as in Figure 3.2(ii) and mutations of rational tangles (Figure 3.2(iii)) after a suitable cyclic permutation.

Figure 3.2: Transposition of rational tangles

 \Box (Claim 3.5)

Claim 3.6. $\mathcal{M}(r'_{\sigma(1)}, r'_{\sigma(2)}, r'_{\sigma(3)})$ is isotopic to $\mathcal{M}(r_1, r_2, r_3)$.

PROOF. Let us write $r'_{\sigma(i)} = r_i + m_i$ for some integer m_i . Since $\sum_{i=1}^3 r'_{\sigma(i)} = \sum_{i=1}^3 r'_i = \sum_{i=1}^3 r_i$, we have $\sum_{i=1}^3 m_i = 0$. Apply a flype as shown in Figure 3.3, we isotope $\mathcal{M}(r'_{\sigma(1)}, r'_{\sigma(2)}, r'_{\sigma(3)})$ to $\mathcal{M}(r_1, r'_{\sigma(2)} + m_1, r'_{\sigma(3)})$. Note that if m_i is odd, we apply a mutation to get the position as in Figure 3.3.

After a sequence of flypes $\mathcal{M}(r'_{\sigma(1)}, r'_{\sigma(2)}, r'_{\sigma(3)})$ is isotoped to $\mathcal{M}(r_1, r_2, r_3 + m_1 + m_2 + m_3)$ which coincides with $\mathcal{M}(r_1, r_2, r_3)$, because $m_1 + m_2 + m_3 = 0$. \Box (Claim 3.6)

Figure 3.3: Flype

Thus $L = \mathcal{M}(r'_1, r'_2, r'_3)$ is isotopic to $\mathcal{M}(r_1, r_2, r_3)$. This completes a proof of Proposition 3.3. \Box (Proposition 3.3)

3.2. Proof of Theorem 3.1

Let M be a small Seifert fiber space $S^2(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$ with $2 \leq \alpha_1 \leq \alpha_2 \leq \alpha_3$. If M is spherical (i.e. $\pi_1(M)$ is finite), then $L = \mathcal{M}(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$ is the unique link whose double branched cover is homeomorphic to M [13, 17, 21]. So in the following we assume M is not spherical, i.e. it has infinite fundamental group. It follows from Proposition 3.3 that L is a Montesinos link $\mathcal{M}(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$ or an extended torus link. In the following, under the assumption of Theorem 3.1, we exclude the latter possibility.

Let $\varphi: M \to S^3$ be the branched covering projection and $g: M \to M$ the involution satisfying $\varphi \circ g = \varphi$ as in the proof of Proposition 3.3. Then following the proof of Proposition 3.3, we see that $g: M \to M$ preserves a Seifert fibration \mathcal{F} , and $S^3 = M/\langle g \rangle$ has a Seifert fibration $\mathcal{F}/\langle g \rangle$ so that φ sends a fiber in \mathcal{F} to a fiber in $\mathcal{F}/\langle g \rangle$. The lemma below describes the relationship between indices of fibers \tilde{t} in \mathcal{F} and $t = \varphi(\tilde{t})$ in $\mathcal{F}/\langle g \rangle$. For the proof, see [22, Lemma 5.3].

Lemma 3.7. Let \tilde{t} be a fiber of \mathcal{F} which covers a fiber t of $\mathcal{F}/\langle g \rangle$, i.e. $\varphi(\tilde{t}) = t$. Then we have:

- If $g(\tilde{t}) \neq \tilde{t}$, then $index(\tilde{t}) = index(t)$.
- If g(t̃) = t̃ and g|_{t̃}: t̃ → t̃ is a rotation, then index(t̃) is either index(t) or index(t)/2.
- If g(t̃) = t̃ and g|_{t̃}: t̃ → t̃ is the identity map, then index(t̃) is either index(t) or 2index(t).

Let \tilde{t}_i be an exceptional fiber in M whose Seifert invariant β_i/α_i $(1 \le i \le 3)$. Then in the first case we have the following.

Lemma 3.8. If two exceptional fibers, say $\tilde{t_1}$ and $\tilde{t_2}$, cover the same exceptional fiber t in S^3 , then $\beta_1/\alpha_1 \equiv \beta_2/\alpha_2 \mod 1$.

PROOF. Let S be a section of $X = M - \bigcup_{i=1}^{3} \operatorname{int} N(\tilde{t}_{i})$, where $N(\tilde{t}_{i})$ is a fibered tubular neighborhood of \tilde{t}_{i} . Let μ_{i} be a meridian of $N(\tilde{t}_{i})$ and τ_{i} a regular fiber on $\partial N(\tilde{t}_{i})$. Orient τ_{i} so that τ_{1}, τ_{2} and τ_{3} are mutually homologous in X and $\tau_{i} = \alpha_{i}\tilde{t}_{i}$ ($\alpha_{i} \geq 2$). Choose orientation of $s_{i} = S \cap \partial N(\tilde{t}_{i})$ so that the algebraic intersection number $\langle s_{i}, \tau_{i} \rangle$ between s_{i} and τ_{i} is +1. Finally choose an orientation of μ_{i} so that the linking number between μ_{i} and \tilde{t}_{i} is +1. Then $\mu_{i} = \alpha_{i}s_{i} + \beta_{i}\tau_{i}$. Since $g: M \to M$ and $\hat{g}: B \to B$ preserve orientations, $g(\tau_{1}) = \tau_{2}, g(\mu_{1}) = \mu_{2}$. Note that $g(s_{1}) = s_{2} + x\tau_{2}$ for some integer x. Then $\mu_{2} = g(\mu_{1}) = g(\alpha_{1}s_{1} + \beta_{1}\tau_{1}) = \alpha_{1}g(s_{1}) + \beta_{1}g(\tau_{1}) = \alpha_{1}(s_{2} + x\tau_{2}) + \beta_{1}\tau_{2} = \alpha_{1}s_{2} + (\alpha_{1}x + \beta_{1})\tau_{2}$. This shows that $\beta_{2}/\alpha_{2} = (\beta_{1} + x\alpha_{1})/\alpha_{1} = \beta_{1}/\alpha_{1} + x$. Hence $\beta_{2}/\alpha_{2} \equiv \beta_{1}/\alpha_{1} \mod 1$.

Claim 3.9. If $\alpha_1 > 2$ and $\beta_i / \alpha_i \not\equiv \beta_j / \alpha_j \mod 1$ for $i \neq j$, then L is not an extended torus link.

PROOF. Since $\beta_i/\alpha_i \neq \beta_j/\alpha_j \mod 1$ if $i \neq j$, Lemma 3.8 shows that there is not a pair of exceptional fibers which cover the same exceptional fiber. Since M contains three exceptional fibers and for any Seifert fibration of S^3 there are at most two exceptional fibers, there exists an exceptional fiber \tilde{t} in M which covers a regular fiber in S^3 . Then the index of \tilde{t} is 2 by Lemma 3.7. This contradicts the assumption. \Box (Claim 3.9)

Claim 3.10. If $\alpha_1 = 2$, $\beta_2/\alpha_2 \not\equiv \beta_3/\alpha_3 \mod 1$, and $(\alpha_2, \alpha_3) > 2$, then L is not an extended torus link.

PROOF. Note that $\alpha_2 = \operatorname{index}(\tilde{t}_2) \geq 3$ and $\alpha_3 = \operatorname{index}(\tilde{t}_2) \geq 3$, for otherwise, $S^2(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$ is spherical. Hence by Lemma 3.7 \tilde{t}_2 and \tilde{t}_3 cover exceptional fibers t_2 and t_3 , respectively. Since $\beta_2/\alpha_2 \neq \beta_3/\alpha_3 \mod 1$, Lemma 3.8 shows that $t_2 \neq t_3$. Then $\operatorname{index}(t_2)$ and $\operatorname{index}(t_3)$ are relatively prime. By Lemma 3.7 α_i is one of $\operatorname{index}(t_i)$, $\operatorname{index}(t_i)/2$ or $\operatorname{2index}(t_i)$. Since $(\operatorname{index}(t_2), \operatorname{index}(t_3)) = 1$, $(\alpha_2, \alpha_3) \leq 2$. This contradicts the assumption. $\Box(\operatorname{Claim} 3.10)$

Thus L cannot be an extended torus link, and $L = \mathcal{M}(\beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3)$. \Box (Theorem 3.1)

Some Montesinos links are simultaneously extended torus links. In [16] Kawauchi determines pretzel knots whose double branched covers are homeomorphic to those of torus knots, and applies this to determine pretzel knots which are also torus knots. Bonahon and Siebenmann [3] completely determine Montesinos links which are also extended torus links. In its proof they analyze a Seifert fibration which is the lift of a Seifert fibration of S^3 . We can also apply their arguments to show Claims 3.9 and 3.10.

4. Proof of Theorem 1.2

Let $L_{m,n}$ be a Montesinos link $\mathcal{M}(m/(m^2+1), 1/n, -m/(m^2+1))$, where $m, n \geq 2$. The double branched cover of S^3 branched along $L_{m,n}$ is a small Seifert fiber space $X_{m,n} = S^2(m/(m^2+1), 1/n, -m/(m^2+1))$. It is shown by [8, Theorem 1.3] that $L_{2,3} = \mathcal{M}(2/5, 1/3, -2/5)$ is not quasi-alternating. More generally, as mentioned in [8, Subsection 3.2], we have:

Lemma 4.1 ([8]). The Montesinos link $L_{m,n}$ is not quasi-alternating for all $n > m \ge 2$.

Recall that the double branched cover $X_{2,3}$ of S^3 branched along the nonquasi-alternating link $L_{2,3}$ is an L-space; see [11, Proposition 11] where $X_{2,3} = M_0$. Now let us show that $X_{m,n}$ is an L-space for all $n > m \ge 2$.

Lisca and Stipsicz [18] have shown that a Seifert fiber space M over S^2 is an L-space if and only if M does not admit a horizontal foliation. Furthermore, the combined work [6, 14, 24] classifies Seifert fiber space admitting horizontal foliations in terms of their Seifert invariants. Summarizing them we have Proposition 4.2 below, which is quoted from [4, Theorem 5.4].

For ordered triples (a_1, a_2, a_3) and (b_1, b_2, b_3) , we write $(a_1, a_2, a_3) < (b_1, b_2, b_3)$ if $a_i < b_i$ for $1 \le i \le 3$.

Proposition 4.2. A Seifert fiber space $S^2(b, r_1, r_2, r_3)$ $(0 < r_1 \le r_2 \le r_3 < 1)$ is an L-space if and only if one of the following holds.

- (1) $b \ge 0 \text{ or } b \le -3.$
- (2) b = -1 and there is no relatively prime integers $0 < a \le k/2$ such that $(r_1, r_2, r_3) < (1/k, a/k, (k-a)/k).$
- (3) b = -2 and there is no relatively prime integers $0 < a \le k/2$ such that $(1 r_3, 1 r_2, 1 r_1) < (1/k, a/k, (k a)/k).$

Using this criterion, we have:

Lemma 4.3. $X_{m,n}$ is an L-space for all $n > m \ge 2$.

PROOF. Recall that $X_{m,n} = S^2(m/(m^2+1), 1/n, -m/(m^2+1))$, which can be expressed as $S^2(-1, m/(m^2+1), 1/n, 1-m/(m^2+1))$. Since $0 < m/(m^2+1), 1/n, 1-m/(m^2+1) < 1$ and $m/(m^2+1)+(1-m/(m^2+1)) = 1$, Lemma 2.3 in [23] shows that $X_{m,n}$ is an L-space for all $n > m \ge 2$. \Box (Lemma 4.3)

Lemma 4.4. The non-quasi-alternating link $L_{m,n}$ is the unique link whose double branched cover is homeomorphic to $X_{m,n}$.

PROOF. Since $n > m \ge 2$, we see that $m^2 + 1$, n > 2, $m/(m^2 + 1) \not\equiv -m/(m^2 + 1) \mod 1$, and $\pm m/(m^2 + 1) \not\equiv 1/n \mod 1$. It follows from Theorem 3.1 that $L_{m,n}$ is the unique link whose double branched cover is homeomorphic to $X_{m,n}$.

 \Box (Lemma 4.4)

Now Theorem 1.2 follows from Lemmas 4.3 and 4.4.

In [26] Núñez and Ramírez-Losada have computed Seifert invariants of branched covers of torus knots explicitly, and Gordon and Lidman [7] classify branched covers of torus knots yielding L-spaces.

Acknowledgements – I would like to thank Akio Kawauchi for pointing out that an analysis given by Bonahon and Siebenmann [3] can be used to show Claims 3.9 and 3.10, and thank Masakazu Teragaito for helpful conversations.

References

- J.A. Baldwin and W.D. Gillam; Computations of Heegaard-Floer knot homology, J. Knot Theory Ramifications 21 (2012), 65 pp.
- [2] J.S. Birman, F. Gonzáles-Acuña and J.M. Montesinos; Heegaard splittings of prime 3-manifolds are not unique, Michigan Math. J. 23 (1976), 97–103.
- [3] F. Bonahon and L. Siebenmann; New Geometric Splittings of Classical Knots, and the Classification and Symmetries of Arborescent Knots, freely available at http://www-bcf.usc.edu/ fbonahon.
- [4] S. Boyer, D. Rolfsen and B. Wiest; Orderable 3-manifold groups, Ann. Inst. Fourier 55 (2005), 243–288.
- [5] N. Dunfield, N. Hoffman and J. Licata; Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling, to appear in Math. Res. Letters.
- [6] D. Eisenbud, U. Hirsch and W. Neumann; Transverse foliations on Seifert bundles and self-homeomorphisms of the circle, Comment. Math. Helv. 56 (1981), 638–660.
- [7] C. McA.Gordon and T. Lidman; Taut foliations, left-orderability, and cyclic branched covers, Acta Math. Vietnam. 39 (2014), 599–635.
- [8] J.E. Greene; Homologically thin, non-quasi-alternating links, Math. Res. Lett., 17 (2010), 39–49.
- [9] J.E. Greene; Lattices, graphs, and Conway mutation, Invent. Math. 192 (2012), 717–750.
- [10] J.E. Greene; Conway mutation and alternating links, Proc. 18th Gökova Geometry-Topology Conference, (2011), 31–41.
- [11] J.E. Greene and L. Watson; Turaev torsion, definite 4-manifolds, and quasialternating knots, Bull. London Math. Soc., 45 (2013), 962–972.

- [12] A. E. Hatcher; Notes on basic 3-manifold topology, freely available at http://www.math.cornell.edu/hatcher.
- [13] C. Hodgson and J.H. Rubinstein; Involutions and isotopies of lens spaces, Knot theory and manifolds (Vancouver, B.C., 1983), Lecture notes in Math., vol. 1144, Springer, Berlin, 1985, pp.60–96.
- [14] M. Jankins and W. Neumann; Rotation number and products of circle homomorphisms, Math. Ann. 271 (1985), 381–400.
- [15] B. Jiang, S. Wang and Y.-Q. Wu; Homeomorphisms of 3-manifolds and the realization of Nielsen number, Comm. Anal. Geom. 9 (2001), 825–877.
- [16] A. Kawauchi; Classification of pretzel knots, Kobe J. Math. 2 (1985), 11– 22.
- [17] P. Kim; Involutions on prism manifolds, Trans. Amer. Math. Soc. 268 (1982), 377–409.
- [18] P. Lisca and A. Stipsicz; Ozsváth-Szabó invariants and tight contact 3manifolds, III., J. Symplectic Geom. 5, (2007), 357?384.
- [19] W. Meeks and P. Scott; Finite group actions on 3-manifolds, Invent. Math. 86 (1986) 287–346.
- [20] K. Miyazaki and K. Motegi; Seifert fibering surgery on periodic knots, Topology Appl. 121 (2002) 275–285.
- [21] J. M. Montesinos; Variedades de Seifert que son recubridores cíclicos ramificados de dos hojas, Bol. Soc. Mat. Mexicana 18 (1973), 1–32.
- [22] K. Motegi; Dehn surgeries, group actions and Seifert fiber spaces, Comm. Anal. Geom. 11 (2003) 343–389.
- [23] K. Motegi; L-space surgery and twisting operation, to appear in Algebr. Geom. Topol..
- [24] R. Naimi; Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv. 69 (1994), 155–162.
- [25] W. D. Neumann and F. Raymond; Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), Lect. Notes in Math., vol. 664, Springer-Verlag, 1978, pp. 161?196.
- [26] V. Núñez and E. Ramírez-Losada; The trefoil knot is as universal as it can be, Topology Appl. 130 (2003), 1–17.
- [27] P. Orlik; Seifert manifolds, Lect. Notes in Math., vol. 291, Springer-Verlag, 1972.

- [28] P. Ozsváth and Z. Szabó; Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004), 1027–1158.
- [29] P. Ozsváth and Z. Szabó; Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004), 1159–1245.
- [30] P. Ozsváth and Z. Szabó; On knot Floer homology and lens space surgeries, Topology 44 (2005), 1281–1300.
- [31] P. Ozsváth and Z. Szabó; On the Heegaard Floer homology of branched double-covers. Adv. Math. 194 (2005), 1–33.
- [32] A. Shumakovitch; KhoHo pari package, www.geometrie.ch/KhoHo/, 2009.
- [33] H.J. Song, Y.H. Im and K.H. Ko; LCG moves in crystallizations, Geom. Dedicata 76 (1999), 229–251.